VTS: a long-term approach for synchronization of all visualization software

Thomas Crosnier’, Mathieu Joubert®, Quentin Minster®

CNES, Centre spatial de Toulouse, CNES"
18 avenue Edouard Belin, 31401 Toulouse Cedex 4, France
thomas.crosnier@cnes.fr

Spacebel SAS®
Technoparc 8, rue Jean Bart, 31670 Labége, France
mathieu.joubert@spacebel.fr
quentin.minster@spacebel.fr

INTRODUCTION

Visualization of data, results and telemetry is a large and omnipresent topic in the daily activities of space
agencies and their partners. While some representations like graphs are transversal, others are more domain-
specific: coverage analysis, sensor camera simulation, 3D geometry around the Earth, etc.

Without any agency-wide policy, the “visualization” functionality is implemented into each tool which needs it
(Fig. 1). The implementation is thus highly dedicated to a specific environment: programming language,
framework and design.

Mission Analysis Suite

Very Complex Simulator I

2D Projection 1T

Data plots III

3D View III Time control

Very Complex Simulator 1T B T

2D Projection I

Fig. 1: Pre-VTS organization of visualization tools

Excel

Specific
Synoptics
3D View IL

Data plots I

In the first place, application designers may feel the need for a visualization component dedicated to their
environment. Custom software can appear as a perfect answer to complex requirements. Indeed, the final
visualization functionality is fully integrated with the application and exactly addresses the user’s needs.

But this development model has many drawbacks. Overall cost is obviously very high since each project has to
re-implement 2D, 3D, plots, etc. from scratch. Development may also be carried out by non-experts, which
further increases costs, especially for 3D components which have an unforgiving learning curve for developers.

The first answer to these issues is the development of a common visualization facility (Fig. 2). This way,
development is in theory made once for all applications.

Very Complex
Very Complex
Simulator II
|
Mission Telemetry I
Analysis Suite Provider .

Fig. 2: Common visualization facilities

Very Complex Visualization Software

| —
3D View Data plots

[— |
Specific

2D Projection S

In spite of this unification effort, some factors lead to the cyclic emergence of new visualization tools:
e Indecisive communication within the agency: talented and enthusiastic engineers produce their own
specific tools, mainly 3D
e New technologies or software make tools permanently obsolete
e Industry partners propose new tools all the time

This instability prevents building up a capital of skills and standard processes, both in the long term and in the
diversity of a space agency’s activities.

A FUTURE-PROOF DESIGN

Instead of developing once more a brand new product that integrates standard features for spatial work like 3D in
Cosmos, Mercator view, orbit propagation, etc., CNES decided on the conception of an open framework able to
integrate various software components, including already existing ones. The core idea was to provide a

synchronization protocol between heterogeneous applications in order to leverage them together for the
visualization of common data (Fig. 3).

Very Complex
Very Complex
Simulator II
I
Mission Telemetry I 2D Projection Specif.ic
Analysis Suite Provider . Synoptics
N e e e e e e e e e e e e e e e e e e = -

Fig. 3: Modular design of VTS

o —— ~

—_—————

i

AVTS |

This approach can federate all visualization activities at CNES. Acceptance of the VTS toolkit is increased by its
flexible design: existing software can be interfaced with VTS with little modification.

Highly specialized software particularly benefits from being integrated with the toolkit, as this allows it to focus
on its core features rather than having to develop generic visualization capabilities.

With this paper, CNES wants to provide the Space community with feedback on how VTS benefited all its
visualization activities.

SOFTWARE ARCHITECTURE

Time synchronization and control across multiple applications is the backbone of the VTS system. In both real-
time and replay modes, applications connected to the VTS central component (the “Broker”) share the same
visualization context and date.

This strongly correlates the various data sources available, making important events more noticeable by
coalescing several symptoms: an outlying point in a plot, a spacecraft orientation shown in 3D, a geographic
position on a planisphere, or a particular event in a specialized synoptic (Moon transit across a sensor’s field of
view, etc.).

Drawing from the many and free software tools shipped with VTS, plus user-made compatible applications, a
VTS user can compose a software suite that closely matches his needs.

TECHNICAL CHOICES

In order to successfully achieve the unification of various visualization activities, a number of technical choices
were made. They are presented here below.

Single XML configuration file

The VTS configuration file holds configuration information needed by visualization components to set up the
visualization: spacecrafts, ground stations, sensors...

The configuration file is written in XML format. This format emphasizes understandability of the file contents
by human readers, while being extremely well supported by most programming languages. This allows third-
party software to easily generate its own visualization configuration files.

The configuration file is also comprehensive: it contains configuration information for all synchronized
applications and all entities taking part in the visualization. This makes sharing and duplicating visualization
contexts amongst VTS users a breeze.

Synchronized applications need not be modified to parse the VTS configuration file. Interoperability with VTS
can be provided through application-specific proxy utilities (the “Launchers”) with the ability to extract required
information from the VTS configuration file, and prepare the visualization environment of their applications
accordingly.

Human-readable input data format

Input data such as (but not limited to) position and attitude ephemerides of visualized spacecrafts must be
provided to synchronized applications.

Data files must be written in the “CIC” format. It is a compact text format inspired by and resembling the
CCSDS OEM and AEM formats. It is human-readable and easy to understand, with a well-defined header
describing the data. Data can be either numerical values (integers or real numbers) or text strings, enabling any
serializable data to be stored in a CIC file.

This makes CIC data files easy for humans and software alike to generate or parse, facilitating activities such as
rapid prototyping, heavy data generation for VTS from third-party tools...

Synchronized applications either need to be updated to handle the CIC format, or may retain their specific data
formats. In the latter case, interoperability with VTS must then be provided through proxy utilities (the
“Launchers”) with the ability to convert CIC data files into application-specific data files.

CIC OEM VERS = 2.0
CREATION DATE = 2012-03-29T11:35:51.706

ORIGINATOR = CNES - DCT/SB/MS
META_START

OBJECT_NAME = CIC-Sat

OBJECT_ID = CIC-Sat
CENTER_NAME = EARTH

REF_FRAME = ICRF

TIME SYSTEM = UTC

META STOP

57578 0.00000 -643.783 —6953.956 ~15.097
57578 10.00000 =658.845 6950 .66 59.783
57578 20.000000-668.826 =6950.575 134.651]
57578 30.00000 =678.731 =6947.671 209.514

Fig. 4: Sample attitude CIC file
Extensible text-based synchronization protocol

Synchronized applications communicate with the VTS Broker in order to receive the visualization time and
various visualization-related commands.

Communications follow a client-server model through a standard TCP socket, using a custom text-based
protocol. This simple design enables easy integration with existing third-party software.

The synchronization protocol is stateful and versioned. It carries time synchronization messages, time control
commands, and a variety of miscellaneous visualization-related commands. It is also used to broadcast data
streams in real-time mode, as well as base64-encoded raw data (e.g. screenshots).

Ja) User Input
Broker AiGE

—

e | Vembraates | Fo | Do | feshiins | o

Master Time Loop

Socket server
1) Connect + Init 1} Connect + Init
message 3b) PAUSE message
2) Time 2) Time
each 500ms each 500ms
r v
Socket client Socket client
Client A ClientB
[T == | R S
Local Time Loop Local Time Loop

Fig. 5: VTS synchronization protocol

The protocol can be extended to transmit application-specific messages, or pre-declared data values using a
variety of supported data types. Applications only need provide VTS with a standard INI file describing the data
values they may receive through the synchronization protocol during a visualization.

Actual data may then be sent to synchronized applications manually from the GUI or using the scripting features
of the VTS Broker. This enables fine-grain control over the visualization parameters for all compatible
applications, making VTS ideal for generating movies or preparing live demos.

Finally, the communication channel is a two-way link, enabling external applications to send visualization
commands or time synchronization messages towards VTS, effectively taking control of the visualization.

This allows VTS to be used in real-time mode where time synchronization is provided by an external application
(e.g. a spacecraft simulator).

High-accuracy time synchronization engine

VTS features a sophisticated time synchronization engine tasked with sending time synchronization messages
(“ticks”) to synchronized applications at a rate of 500 ms (wall clock time). This engine supports high-accuracy
restitution (currently millisecond-level in visualization time, with nanosecond-level planned) of scripted
commands and smooth video capture, even at very high visualization speed or on old hardware.

[';. Broker - VTS - CubeSaf

QMO YS 90x Faster 7 & @03. 10 06:00 21.03.10 07:00 21.03.10 08:00 21.03.10 09:00 21.03]

50:[201.03.21 | pe042zuTC | i L 99 9
[
o

SCRIPT.TXT & ©
L 3 I:(. :.

Events for CubeSat
CUBESAT_OEM_POSITION_2.0.TXT e
CUBESAT_AEM_ATTITUDE_2.0.TXT
CUBESAT_MEM_GS_ANGLE_20.TXT
CUBESAT_SEMSOR_COLOR.TXT
CUBESAT_MEM_ECLIPSE_2.0.TXT
CUBESAT_MEM_MODE_2.0.TXT

LGEESE a0 228

Timeline ‘ View Properties I Events I 3D Cameras I Applications I Server |

Fig. 6: Advanced time synchronization engine
Stable interfaces

All interfaces to external applications are fully documented, with examples, in the VTS user manual. They are
versioned and, as much as possible, kept stable over time. Backwards compatibility is assured for VTS-owned
formats, i.e. the synchronization protocol and the XML configuration file.

LIMITATIONS

In order to remain consistent with its design philosophy, the functional scope of VTS is purposely limited to
visualization only. Data production activities are kept to a bare minimum. It is up to the user to provide the data,
using the tools of his choice.

In particular, VTS does not offer the following features:
e Orbit propagation

Attitude generation

Environment models

Mission analysis / models

Satellite simulation

Electrical and thermal simulation

However, there are a few known use cases for data production with VTS. Such cases include Celestia-based
computations of the insulation for solar arrays on Rosetta’s Philae lander, and Celestia-based computations of
LIDAR depth maps for LIDAR simulations. These cases stand for R&D projects and are not publically released.

Event when handling user data, VTS specifically ignores as much as possible about the data contents, except for
core entity configuration data such as position or attitude ephemerides. The preferred policy for non-core data is
to provide the data to the applications and let them handle it if they can. VTS only gives special status to core
data such as position and attitude ephemerides of spacecrafts and their mobile components.

These limitations, which result on continuous design choices, make VTS a pure visualization software. VTS
does not imply to replace existing space domain software, and it will never go through its functional scope.

BENEFITS

The VTS approach to visualization ensures continuity in the long term for visualization activities at CNES, as
evolving requirements will be covered thanks to the interchangeability of applications within the VTS
framework.

VTS does encourage reuse of existing applications, which reduces investments in software development as only
new requirements need to be addressed. Even then, if alternative software emerges instead of one of the main
applications of VTS like the 3D view Celestia, it can be adapted to VTS and gradually and seamlessly replace it.
While VTS is not the definitive answer to the recurring software development costs of visualization tools, as its
acceptance grows it helps foster interoperability between all visualization tools.

VTS also benefits its users by indirectly sharing ideas from users all over CNES, due to its development model:
as CNES projects contribute new features to VTS, those features are made available to all VTS users, providing
them with possibly new tools and ways to visualize and analyze their own data.

VTS USERS

In 2015, having been developed for six years on, VTS is widely used at CNES: ATV, Galileo, all operational
activities, the Rosetta probe (Fig. 1), spacecraft simulators, concurrent engineering, etc. It is also gaining traction
outside CNES, e.g. at Airbus Defense & Space.

Historically, VTS users have always been very involved in the direction taken by VTS, mostly through feature
requests supporting specific workflows but also as validation aids during development of those new features.
This strong interaction with its user base has ensured solid adequacy of the VTS toolkit within CNES.

As a particular example, CNES’s Centre d’Ingénierie Concurrente (CIC, or Concurrent Design Facility) has been
from the early days a strong partner and advocate of VTS, using it and pushing it further in all phases of
spacecraft design.

[R e e =

L LB wS@d x|+

S| e S e ey, S e e
1 /\/(SN S

Fig. 7: Rosetta mission
CONCLUSION

With its minimalistic yet rock-solid foundation as a visualization software coordinator, VTS has become a
reference point at CNES for visualization activities. Its focus on letting each tool perform its specialty and
keeping feature bloat to a minimum has proven successful and has gathered great support from various projects
at CNES.

As software becomes increasingly cheap to produce and diversified, and as the Space industry gradually enters
the era of Big Data, the VTS approach of enforcing interoperability of its specialized components becomes
increasingly vital to successful analysis of the huge amounts of data involved in complicated interactions aboard
spacecrafts.

The ability to assemble a software suite from several specialized components to answer a particular question is
one of the main strengths of VTS, and as such, it is our belief that the VTS philosophy will succeed in helping
engineers solve tomorrow’s most complex challenges in spacecraft design and engineering.

