ESA-HMI STANDARDIZED FRAMEWORK FOR DESIGNING HUMAN- MACHINE
INTERFACES

Joanna Modtawska"?, Krzysztof Samg", Michat Tanas™?, Dariusz Walczak®, Nieves Salor Moraf*

ITTI Sp. Z 0.0®
ul. Rubieg 46, 61-612 Pozna(PL), +48(0)61 6226985
Email: joanna.modlawska@itti.com.pl

Adam Mickiewicz University, Faculty of Physi¢s
ul. Umultowska 85, 61-6142 PozigPL), +48(0)61 8294000

Poznai University of Economics, Faculty of Informatics ahElectronic Economy®
Al. Niepodlegtaci 10, 61-875 Pozna+48(0)61 856 90 00

Vitrociset Belgium, permanent establishment in thetherland$”
‘sGravendijkseweg, 53 - 2201CZ Noordwijk (NL), +8)71 3649770

ABSTRACT

The evolution in IT (Information Technology) system
has been immense in recent years and countless
innovative solutions have been successfully
implemented. However, wherever there is a fast and
frantic development evolution, there is always atso
chaos associated with involving simultaneously many
incompatible or disjoint solutions. Such variety of
solutions significantly raises complexity of the
developed systems, as well as increase risk of huma
operators mistakes. Therefore, the need for widely
accepted standards and reference solutions is liegom
a rule instead of an option. Such standardizat®n i
especially important for human-machine interfaces
(HMI), which are the only part of an IT system ditlg
exposed to its users and thus their design flavegiimks

can be neither corrected nor hidden by any othgrla
of software.

This paper presents the results of the “The tecgyol
framework for the development of modular, portable
and adaptive Human-Machine Interfaces in ground
segment software products” (ESA-HMI) project. The
main objective of the project is the developmentaof
standard methodology and framework for design and
development of multi-platform human-machine
interfaces for the ground-segment IT systems used
within the space sector by the definition in a texkt
format (i.e. XML — eXtensible Markup Language). Buc
framework can significantly reduce both costs and
development time of human-machine interfaces by
providing a collection of reusable building blocks
every space-related graphical control. Such apprigac
expected to significantly reduce training costs itsf
human operators and simultaneously reduce theofisk
making trivial errors. Another significant advaneagf

the ESA-HMI framework is the separation of the
human-machine interface from the associated busines
logic, thus allowing applying design patterns difyeto

the development. Such separation allows the human-
machine interface to conform to the appropriate
industrial standards regardless of specifics oft#nget
system. As proof of concept and due to its impaean
ESA environment, in the ESA-HMI project graphical
controls ensuring access to the data models deskciib

the ESA standards [1], [2], [3] and [4] will be pided.

1. INTRODUCTION

The “The technology framework for the development o
modular, portable and adaptive Human-Machine
Interfaces in ground segment software products”
(hereinafter called ESA-HMI) is an ESA project,
realized in the first Call of the ESA Polish Indyst
Incentive Scheme. The project is realized by a
consortium of two companies. The prime contracsor i
ITTI sp. z 0. 0. from Poland and the subcontraésor
Vitrociset from Belgium.

The main objective of the ESA-HMI project is to
develop a TRL-4 (Technology Readiness Level 4)
demonstrator of the idea for automatically genatati
reusable, system and device independent, HMI
controls. The methods and software developed within
the project may become a baseline for the
standardization of HMI for the ground segment syste

2. ENGINEERING APPROACH

2.1 The Idea of Single Definition Multiple
Compilations Controls

The main idea of the HMI framework is to create Ul
(User Interface) control definitions independendnfr

the source code, which would allow not only definin
the required Ul controls but also use them in saver
applications (i.e. systems and hardware architesjur
regardless of their implementation details. Technic

feasibility of such independency at the current
technological level was analyzed in [5]. To achigvis
independency, the Ul controls definitions will be
translated and compiled by the middleware calledl HM
Presentation Engine. This engine is target device
specific, so the project approach allows using
standardized Ul definitions without having to malhua
rely on target optimization utilities of softwareusce
code. Moreover, the selected approach allows fey ea
implementation of Ul optimizations for particularget
devices. Especially, Ul functionalities which mag b
impractical on a particular target device can gas#
re-configured.

For example, a block diagram can be presented on
tablets in read-only mode (because the edition of
diagrams with imprecise finger driven touchscresn i
not a necessity) while on computers it can be ptese

in editable mode. The translator customizes the Ul
definition for a particular device where the Ulgsing

to be integrated. The compilation process of tHe U
controls’ definition is presented in the followikig.1.

id Static Architecture

HII Controls Compiler

«interfacey XML Translator

HMI RCP Template

HidI Freszntation Engine

HMI Pres entation Driver

wm

HMI Presentation | "
Builder dmports

«documentss | . _
Configuration | cuse»

Sets
«generates \(generatesn

HMI Components
Library

«<object sytem»
Ul Eclipse RCP g

«integratess

Integrated System

Fig. 1. The process of compilation of an Ul conttefinition

Application frameworks use different methods to
provide their user interface definition: source eod
template languages, XMLs or even CSS. In order to
reduce the complexity and time required to create
harmonized Uls, the definition of such graphical
interfaces needs to be externalized in a simple and
universal way. Due to its extended use as an exghan
format, XML has been selected to be used for dadini
the graphical interface as an input to the framéwor
Thus, XML is also to be used in the development of
Android and Desktop applications through the
application of different libraries. One can use Ffoid
SDK for mobile phones/tablets while XWT (XML

Windowing Toolkit)
applications.

However, although both, mobile and desktop
applications, require an XML for their configuratio
the structure of the files and the runtime envirentn
are completely different. Thus, modifications havde
performed to allow the runtime environments to igp
the interfaces correctly. These modifications ameet
consuming, so an automatic method to provide them i
proposed as a part of the architecture.

is applied for Java desktop

HMI framework enables a user to define the graphica
interface through a common XML file for both
platforms. The input XML is compiled into its mobior
RCP desktop formats.

Within the system and in the Presentation Engihe, t
specific formats are used to generate the sourzeibi
Java code projects containing the Ul classes wigtr t
default behaviour associated. These projects habe t
integrated into the Integrated Target System. If no
further modification is performed, the defined draal
interface will be displayed but it will lack anytda

In order to close the loop with the integrated ayst
data shall be imported to the system and theirifipec
business logic shall be specified. In order to exi
this, the framework provides an interface to add th
business logic to different controls.

2.2 Exemplary Controls
control example gauge

Implemented - Simple

In order to test the framework a few new HMI cotdro
were implemented. An example is the “Gauge control”
which shows a monitored value on a scale with
minimum and maximum thresholds for the value. The
control alerts the user when the value is outsidth®
thresholds and throws an exception in case theevialu
out of the defined scope.

An example views of the gauge control in their two
states (i.e. normal one and alert one) are presémtie
following figures:

=17

"50 50

Fig. 2. The gauge control - value between alert
thresholds

w
o

20

-00

Fig. 3. The gauge control - value above alert
thresholds

3. PROVIDED INNOVATIONS IN SOFTWARE
DEVELOPMENT PROCESS

3.1 General Idea

The idea of defining control definitions independeh
their implementation details allows for roles sepian:

e HMI User — the person who defines the final
user interfaces with available controls in XML
format,

* HMI Business Logic Developer — person who
integrates the HMI framework and adds logical
behaviours to the controls.

Note that the above roles are users of the framewor
not its developers. Therefore, they use the contitmdt
the framework provides, but the development of new
controls is not part of their responsibilities.

HMI User

HMI User’s role is to design an application’s user
interface. Users have to know XML syntax and thelHM
API. However, knowledge of Java, Android API or any

other target programming language is not required.

Their work is to compose an XML which contains the
controls’ definition and run the system applicatidie
application will create bundle projects for desktnmpd
mobile applications. In both cases a demo bundle wi
be generated as well. User can run this demo prajet
check the appearance of the user interface as &umoc
Consequently, users’ development cycle consist3 of
steps:

1. Defining the Ul in XML format,

2. Running the application for generating the Ul
bundles,

3. Testing the Ul via demo project.

The demo project contains only the user interfabere
is no business logic so the output interface mighk
slightly different than the final one. This mearlie
controls still need to be set up with proper d&ts sand
constraints checks.

HMI Business Logic Developer

The Business Logic Developer’s role is to provitle t
business logic behind the controls and to creaditial
application. They use the application’s output Hesd
and integrate them within the final system develeptn
environment.

Business users do not need to know the low-levialilde

or the implementation of the Ul controls. They ratet
with the controls via Control Manager, which baljca
presents only the controls data model. All controls

In most cases, the business logic developers ailého
provide platform specific source code. The manmer i
which the user handles the reuse of the busingss i®

a design decision of the business user and it tisid®i
the scope of the HMI project.

3.2 HMI Design and Implementation

HMI framework requires some additional steps for
developer at each stage of the development probess.
the following section a brief description will be

provided, presenting what should be done in order t
utiize the HMI framework starting with the

requirements.

XML Preparation and Transformation

In HMI there are three different types of XML
description of the Ul

e User oriented HMI XML following the HMI
Controls AP,

e Desktop user interface definition in XWT
format, following the Eclipse RCP (Rich Client
Platform) Ul format,

* Mobile user interface definition in Android
layout files.

HMI users are only aware of the first XML formathd&
other two are important for current and future
developers of the HMI framework.

In case new controls need to be supported by thé HM
framework or current ones modified, HMI control
developers should define user friendly represenatif
the control applying the following rules:

e Design XML syntax for the control definition,

* Let users define attributes of the control via
XML,

« Define default values for optional attributes.

For the gauge example, displayed in Fig. 2, theee a
five attributes that set the initial state of thentol.
Therefore, HMI users need to prepare the following
common XML code:

<Panel> <Gauge highValue="100" lowValue="0"
highThreshold="50" lowThreshold="30" value="35" />
</Panel>

Then, the XML translator (sed-ig. 1) generates the
target specific code (e.g. XWT or Android XML) by
applying simple XSLT (Extensible Stylesheet Langag
Transformation) translations.

For example, the desktop version of the gauge XML
will look as follows:

<?xml version="1.0" encoding="UTF-8"?>

should sensitive to model changes and react when a <Shell xmins:x="http://www.eclipse.org/xwt"

change occurs. HMI is neutral to business logic;
therefore there is no explicit limitation for buegs
logic.

xmins:hmi="clr-
namespace:pl.com.itti.nmi.desktop"

xmlns="http://www.eclipse.org/xwt/presentatio
n">
<Shell.layout> <RowLayout/> </Shell.layout>
<hmi:HGauge
highValue="100"
lowValue="0"
highThreshold="50"
lowThreshold="30"
value="35" />
</Shell>
The Android version, generated from the same basic
XML will look differently:

<LinearLayout
xmins:android="http://schemas.android.com/apk/res/a
droid"
xmins:hmi="http://schemas.android.com/apk/res-
auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
android:paddingBottom="@dimen/activity vertical_
margin"
android:paddingLeft="@dimen/activity _horizontal_
argin”
android:paddingRight="@dimen/activity horizontal
margin"
android:paddingTop="@dimen/activity _vertical igpar
in" >
<pl.com.itti.hmi.mobile.controls.HGauge
android:id="@+id/gaugel"”
android:layout_width="fill_parent"
android:layout_height="150px"
hmi:label="HMI Gauge"
hmi:max="100"
hmi:maxThreshold="50"
hmi:min="-100"
hmi:minThreshold="-50" />
</LinearLayout>

If the default behaviour of the XSLT translationnist
enough for new controls, the HMI developer will bav
to modify the “Compiler” module of the framework.

Model and business logic implementation

To implement a new control within the HMI
framework, one should start with the data and l&ssin
model for the control. This part should be writtiem
both platforms simultaneously, so no platform sfieci
dependencies are allowed.

1. Define the control interface in
pl.com.itti.hmi.api.interfaces. The interface
should extend one of the existing Control
interfaces (either BasicControl or
ComplexControl ones). The interface should
focus on the control behaviour and the needed
data and not on the presentation aspects.

2. Develop default implementation for the
interfaces in pl.comi.itti.hmi.api.controls
package. This class will act as a model for
control.

3. Al simple controls should extend
BasicControls class and call default constructor
of the class. This will register the control in the
singletonControlManager instance. It holds all
controls by their name or id. HMI Business
Logic Developers use it to retrieve and access
control objects.

4. Check pl.com.tti.hmi.api.events package for
needed listener and event classes. Entirely new
class must be created only if no suitable ready
to use one is found. At least one listener is
required to notify view classes about control
state change.

5. The pl.comi.itti.hmi.api.exceptions package is
responsible for managing exceptions
mechanisms. Again, entirely new exception
class must be created only if no ready to use
one is found..

Presentation Engine Devel opment

The process of developing of a platform specifintoml

is different for both platforms and requires knodge

of each of them. On the one hand, desktop devedoper
will extend the Composite class and hold referetace
the widget class or build a new widget class basedn
existing simpler widget. On the other hand, mobile
developers will inherit the most similar widget and
modify its behaviour. They will hold reference toet
data model.

On both platforms the presentation classes should
implement the control interface defined in the jwas
step (contained in pl.com.tti.hmi.api.interfaces
package). All methods should delegate responsikiiit
the model class.

In HMI framework data model should hold the statd a
the control view class should only react to changfes
the model class. Business Logic Developer uses only
data model class so this is the only way to befirdti
that the control should change its view.

The following table compares control development [6]
process on desktop and mobile devices:

Step Desktop Mobile

Define possible attributes for the XML widget

1 .
representation.

Create class which
2 extends Composite class
(typical SWT (Standard
Widget Toolkit) step).

Create class extending
the most similar widget.

3 Create and store data model for the control.
4 Parse input parameters.
5 Implement the same interface as the data model|.

Delegate all methods to the data model class.

Register your class as a
listener for data model
change. Add proper
behaviour for the control

Register listeners to rea
on model changes.

—

4. CONCLUSION

The project proved that splitting the HMI desigorfr
application development provides significant
advantages. Using externally provided, ready toamk
well-tested control sets instead of hand-codingryeve
control for each new application obviously boogts t
development process, at the same time making
applications much more error-resistant. Moreovechs

a framework automatically enforces similarities in
HMIs of various applications, both in the senséHifl

look and behaviour. Such similarities help end-siger
decrease the learning curve on how to use them;
because they are already familiar with interfaceklo
and behaviour.

5. REFERENCES

[1] ECSS-E-ST-70-32C, “Test and operations
procedure language”, 31 July 2008
[2] ECSS-E-ST-70-31C, “Ground systems and

operations — Monitoring and control dat:
definition”, 31 July 2008
[3] ECSS-E-ST-40C, “Space engineering —

Software”, 6 March 2009

[4] ECSS-E-70-32C, “Procedure Language for Users
in Test and Operations”

[5] Dalmasso, |.; Datta, S.K.; Bonnet, C.; Nikadih,
"Survey, comparison and evaluation of cross
platform mobile application development tools,"
Wireless Communications and Mobile Computing
Conference (IWCMC), 2013 9th International ,
vol., no., pp.323,328

Research2guidance, The “Cross Platform Tool
Benchmark 2013” report, 16 October 2013

