

ESA-HMI STANDARDIZED FRAMEWORK FOR DESIGNING HUMAN- MACHINE
INTERFACES

Joanna Modławska(1,2), Krzysztof Samp(1), Michał Tanaś(1,2), Dariusz Walczak(1,3) , Nieves Salor Moral(4)

ITTI Sp. Z o.o.(1)
ul. Rubież 46, 61-612 Poznań (PL), +48(0)61 6226985

Email: joanna.modlawska@itti.com.pl

Adam Mickiewicz University, Faculty of Physics(2)
ul. Umultowska 85, 61-6142 Poznań (PL), +48(0)61 8294000

Poznań University of Economics, Faculty of Informatics and Electronic Economy (3)
Al. Niepodległości 10, 61-875 Poznań +48(0)61 856 90 00

Vitrociset Belgium, permanent establishment in the Netherlands(4)
‘sGravendijkseweg, 53 - 2201CZ Noordwijk (NL), +31(0)71 3649770

ABSTRACT

The evolution in IT (Information Technology) systems
has been immense in recent years and countless
innovative solutions have been successfully
implemented. However, wherever there is a fast and
frantic development evolution, there is always also a
chaos associated with involving simultaneously many
incompatible or disjoint solutions. Such variety of
solutions significantly raises complexity of the
developed systems, as well as increase risk of human
operators mistakes. Therefore, the need for widely
accepted standards and reference solutions is becoming
a rule instead of an option. Such standardization is
especially important for human-machine interfaces
(HMI), which are the only part of an IT system directly
exposed to its users and thus their design flaws or quirks
can be neither corrected nor hidden by any other layer
of software.

This paper presents the results of the “The technology
framework for the development of modular, portable
and adaptive Human-Machine Interfaces in ground
segment software products” (ESA-HMI) project. The
main objective of the project is the development of a
standard methodology and framework for design and
development of multi-platform human-machine
interfaces for the ground-segment IT systems used
within the space sector by the definition in a textual
format (i.e. XML – eXtensible Markup Language). Such
framework can significantly reduce both costs and
development time of human-machine interfaces by
providing a collection of reusable building blocks for
every space-related graphical control. Such approach is
expected to significantly reduce training costs of its
human operators and simultaneously reduce the risk of
making trivial errors. Another significant advantage of
the ESA-HMI framework is the separation of the
human-machine interface from the associated business
logic, thus allowing applying design patterns directly to

the development. Such separation allows the human-
machine interface to conform to the appropriate
industrial standards regardless of specifics of the target
system. As proof of concept and due to its importance in
ESA environment, in the ESA-HMI project graphical
controls ensuring access to the data models described in
the ESA standards [1], [2], [3] and [4] will be provided.

1. INTRODUCTION

The “The technology framework for the development of
modular, portable and adaptive Human-Machine
Interfaces in ground segment software products”
(hereinafter called ESA-HMI) is an ESA project,
realized in the first Call of the ESA Polish Industry
Incentive Scheme. The project is realized by a
consortium of two companies. The prime contractor is
ITTI sp. z o. o. from Poland and the subcontractor is
Vitrociset from Belgium.

The main objective of the ESA-HMI project is to
develop a TRL-4 (Technology Readiness Level 4)
demonstrator of the idea for automatically generating
reusable, system and device independent, HMI
controls. The methods and software developed within
the project may become a baseline for the
standardization of HMI for the ground segment systems.

2. ENGINEERING APPROACH

2.1 The Idea of Single Definition Multiple
Compilations Controls

The main idea of the HMI framework is to create UI
(User Interface) control definitions independent from
the source code, which would allow not only defining
the required UI controls but also use them in several
applications (i.e. systems and hardware architectures)
regardless of their implementation details. Technical

feasibility of such independency at the current
technological level was analyzed in [5]. To achieve this
independency, the UI controls definitions will be
translated and compiled by the middleware called HMI
Presentation Engine. This engine is target device
specific, so the project approach allows using
standardized UI definitions without having to manually
rely on target optimization utilities of software source
code. Moreover, the selected approach allows for easy
implementation of UI optimizations for particular target
devices. Especially, UI functionalities which may be
impractical on a particular target device can easily be
re-configured.

For example, a block diagram can be presented on
tablets in read-only mode (because the edition of
diagrams with imprecise finger driven touchscreen is
not a necessity) while on computers it can be presented
in editable mode. The translator customizes the UI
definition for a particular device where the UI is going
to be integrated. The compilation process of the UI
controls’ definition is presented in the following Fig.1.

Fig. 1. The process of compilation of an UI control definition

Application frameworks use different methods to
provide their user interface definition: source code,
template languages, XMLs or even CSS. In order to
reduce the complexity and time required to create
harmonized UIs, the definition of such graphical
interfaces needs to be externalized in a simple and
universal way. Due to its extended use as an exchange
format, XML has been selected to be used for defining
the graphical interface as an input to the framework.
Thus, XML is also to be used in the development of
Android and Desktop applications through the
application of different libraries. One can use Android
SDK for mobile phones/tablets while XWT (XML

Windowing Toolkit) is applied for Java desktop
applications.

However, although both, mobile and desktop
applications, require an XML for their configuration,
the structure of the files and the runtime environment
are completely different. Thus, modifications have to be
performed to allow the runtime environments to display
the interfaces correctly. These modifications are time
consuming, so an automatic method to provide them is
proposed as a part of the architecture.

HMI framework enables a user to define the graphical
interface through a common XML file for both
platforms. The input XML is compiled into its mobile or
RCP desktop formats.

Within the system and in the Presentation Engine, the
specific formats are used to generate the source/binary
Java code projects containing the UI classes with their
default behaviour associated. These projects have to be
integrated into the Integrated Target System. If no
further modification is performed, the defined graphical
interface will be displayed but it will lack any data.

In order to close the loop with the integrated system,
data shall be imported to the system and their specific
business logic shall be specified. In order to achieve
this, the framework provides an interface to add the
business logic to different controls.

2.2 Exemplary Controls Implemented - Simple
control example gauge

In order to test the framework a few new HMI controls
were implemented. An example is the “Gauge control”,
which shows a monitored value on a scale with
minimum and maximum thresholds for the value. The
control alerts the user when the value is outside of the
thresholds and throws an exception in case the value is
out of the defined scope.

An example views of the gauge control in their two
states (i.e. normal one and alert one) are presented in the
following figures:

Fig. 2. The gauge control - value between alert
thresholds

Fig. 3. The gauge control - value above alert
thresholds

3. PROVIDED INNOVATIONS IN SOFTWARE
DEVELOPMENT PROCESS

3.1 General Idea

The idea of defining control definitions independent of
their implementation details allows for roles separation:

• HMI User – the person who defines the final
user interfaces with available controls in XML
format,

• HMI Business Logic Developer – person who
integrates the HMI framework and adds logical
behaviours to the controls.

Note that the above roles are users of the framework,
not its developers. Therefore, they use the controls that
the framework provides, but the development of new
controls is not part of their responsibilities.

HMI User

HMI User’s role is to design an application’s user
interface. Users have to know XML syntax and the HMI
API. However, knowledge of Java, Android API or any
other target programming language is not required.
Their work is to compose an XML which contains the
controls’ definition and run the system application. The
application will create bundle projects for desktop and
mobile applications. In both cases a demo bundle will
be generated as well. User can run this demo project and
check the appearance of the user interface as a mockup.
Consequently, users’ development cycle consists of 3
steps:

1. Defining the UI in XML format,
2. Running the application for generating the UI

bundles,
3. Testing the UI via demo project.

The demo project contains only the user interface. There
is no business logic so the output interface might look
slightly different than the final one. This means, the
controls still need to be set up with proper data sets and
constraints checks.
HMI Business Logic Developer

The Business Logic Developer’s role is to provide the
business logic behind the controls and to create the final
application. They use the application’s output bundles
and integrate them within the final system development
environment.

Business users do not need to know the low-level details
or the implementation of the UI controls. They interact
with the controls via Control Manager, which basically
presents only the controls data model. All controls
should sensitive to model changes and react when a
change occurs. HMI is neutral to business logic;
therefore there is no explicit limitation for business
logic.

In most cases, the business logic developers will have to
provide platform specific source code. The manner in
which the user handles the reuse of the business logic is
a design decision of the business user and it is outside
the scope of the HMI project.

3.2 HMI Design and Implementation

HMI framework requires some additional steps for
developer at each stage of the development process. In
the following section a brief description will be
provided, presenting what should be done in order to
utilize the HMI framework starting with the
requirements.
XML Preparation and Transformation

In HMI there are three different types of XML
description of the UI:

• User oriented HMI XML following the HMI
Controls API,

• Desktop user interface definition in XWT
format, following the Eclipse RCP (Rich Client
Platform) UI format,

• Mobile user interface definition in Android
layout files.

HMI users are only aware of the first XML format. The
other two are important for current and future
developers of the HMI framework.

In case new controls need to be supported by the HMI
framework or current ones modified, HMI control
developers should define user friendly representation of
the control applying the following rules:

• Design XML syntax for the control definition,
• Let users define attributes of the control via

XML,
• Define default values for optional attributes.

For the gauge example, displayed in Fig. 2, there are
five attributes that set the initial state of the control.
Therefore, HMI users need to prepare the following
common XML code:

<Panel> <Gauge highValue="100" lowValue="0"
highThreshold="50" lowThreshold="30" value="35" />
</Panel>

Then, the XML translator (see Fig. 1) generates the
target specific code (e.g. XWT or Android XML) by
applying simple XSLT (Extensible Stylesheet Language
Transformation) translations.

For example, the desktop version of the gauge XML
will look as follows:

<?xml version="1.0" encoding="UTF-8"?>
<Shell xmlns:x="http://www.eclipse.org/xwt"
 xmlns:hmi="clr-
namespace:pl.com.itti.hmi.desktop"

 xmlns="http://www.eclipse.org/xwt/presentatio
n">
 <Shell.layout> <RowLayout/> </Shell.layout>
 <hmi:HGauge
 highValue="100"
 lowValue="0"
 highThreshold="50"
 lowThreshold="30"
 value="35" />
</Shell>
The Android version, generated from the same basic
XML will look differently:

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/an
droid"
 xmlns:hmi="http://schemas.android.com/apk/res-
auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:paddingBottom="@dimen/activity_vertical_
margin"
 android:paddingLeft="@dimen/activity_horizontal_m
argin"
 android:paddingRight="@dimen/activity_horizontal_
margin"
 android:paddingTop="@dimen/activity_vertical_marg
in" >
 <pl.com.itti.hmi.mobile.controls.HGauge
 android:id="@+id/gauge1"
 android:layout_width="fill_parent"
 android:layout_height="150px"
 hmi:label="HMI Gauge"
 hmi:max="100"
 hmi:maxThreshold="50"
 hmi:min="-100"
 hmi:minThreshold="-50" />
</LinearLayout>

If the default behaviour of the XSLT translation is not
enough for new controls, the HMI developer will have
to modify the “Compiler” module of the framework.

Model and business logic implementation

To implement a new control within the HMI
framework, one should start with the data and business
model for the control. This part should be written for
both platforms simultaneously, so no platform specific
dependencies are allowed.

1. Define the control interface in
pl.com.itti.hmi.api.interfaces. The interface
should extend one of the existing Control
interfaces (either BasicControl or
ComplexControl ones). The interface should
focus on the control behaviour and the needed
data and not on the presentation aspects.

2. Develop default implementation for the
interfaces in pl.com.itti.hmi.api.controls
package. This class will act as a model for
control.

3. All simple controls should extend
BasicControls class and call default constructor
of the class. This will register the control in the
singleton ControlManager instance. It holds all
controls by their name or id. HMI Business
Logic Developers use it to retrieve and access
control objects.

4. Check pl.com.itti.hmi.api.events package for
needed listener and event classes. Entirely new
class must be created only if no suitable ready
to use one is found. At least one listener is
required to notify view classes about control
state change.

5. The pl.com.itti.hmi.api.exceptions package is
responsible for managing exceptions
mechanisms. Again, entirely new exception
class must be created only if no ready to use
one is found..

Presentation Engine Development

The process of developing of a platform specific control
is different for both platforms and requires knowledge
of each of them. On the one hand, desktop developers
will extend the Composite class and hold reference to
the widget class or build a new widget class based on an
existing simpler widget. On the other hand, mobile
developers will inherit the most similar widget and
modify its behaviour. They will hold reference to the
data model.

On both platforms the presentation classes should
implement the control interface defined in the previous
step (contained in pl.com.itti.hmi.api.interfaces
package). All methods should delegate responsibility to
the model class.

In HMI framework data model should hold the state and
the control view class should only react to changes of
the model class. Business Logic Developer uses only
data model class so this is the only way to be notified
that the control should change its view.

The following table compares control development
process on desktop and mobile devices:

Step Desktop Mobile

1
Define possible attributes for the XML widget

representation.

2
Create class which

extends Composite class
(typical SWT (Standard
Widget Toolkit) step).

Create class extending
the most similar widget.

3 Create and store data model for the control.

4 Parse input parameters.

5
Implement the same interface as the data model.

Delegate all methods to the data model class.

6

Register your class as a
listener for data model

change. Add proper
behaviour for the control.

Register listeners to react
on model changes.

4. CONCLUSION

The project proved that splitting the HMI design from
application development provides significant
advantages. Using externally provided, ready to use and
well-tested control sets instead of hand-coding every
control for each new application obviously boosts the
development process, at the same time making
applications much more error-resistant. Moreover, such
a framework automatically enforces similarities in
HMIs of various applications, both in the sense of HMI
look and behaviour. Such similarities help end-users to
decrease the learning curve on how to use them;
because they are already familiar with interface look
and behaviour.

5. REFERENCES

[1] ECSS-E-ST-70-32C, “Test and operations
procedure language”, 31 July 2008

[2] ECSS-E-ST-70-31C, “Ground systems and
operations – Monitoring and control data
definition”, 31 July 2008

[3] ECSS-E-ST-40C, “Space engineering –
Software”, 6 March 2009

[4] ECSS-E-70-32C, “Procedure Language for Users
in Test and Operations”

[5] Dalmasso, I.; Datta, S.K.; Bonnet, C.; Nikaein, N.,
"Survey, comparison and evaluation of cross
platform mobile application development tools,"
Wireless Communications and Mobile Computing
Conference (IWCMC), 2013 9th International ,
vol., no., pp.323,328

[6] Research2guidance, The “Cross Platform Tool
Benchmark 2013” report, 16 October 2013

