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ABSTRACT 

 

Spacecraft operations simulators are software facilities devoted to the validation of the operational flight procedures, the 

training of the operation team and the validation of the mission control system. Spacecraft operational simulators 

execute the same on-board software (OBSW) that is boarded in the actual spacecraft. For this reason they incorporate a 

processor emulator that allows the OBSW to interact with the external modules that compose the different spacecraft 

subsystems. 

The LEON family of processors is of common use in space systems. Spanish SEOSAT and ESA Sentinel-5P missions 

use the AS250 platform for the Data Handling System (DHS), which incorporates two SCOC3 computers, including 

one LEON3 processor per computer. In the frame of SEOSAT and Sentinel-5P missions, GMV has developed the 

spacecraft operational simulators, which are based on SIMULUS, ESOC's spacecraft simulation infrastructure.  

At the epoch of starting the development of both SEOSAT and Sentinel-5P operational simulators, SIMULUS did not 

include any emulator of LEON3 processor. GMV decided to integrate the AirBus SimLEON3 emulator into SIMULUS 

infrastructure for its usage in both SEOSAT and Sentinel-5P operational simulators. 

In general, in software applications, the integration of software components or products developed by separate 

companies for different purposes is a challenge. The performed integration of AirBus SimLEON3 product into ESOC 

SIMULUS infrastructure is a good practical case of integration of different software modules coming from different 

companies and purposes. Main technical challenges of this integration are explained; emulator wrapper, access to 

implemented peripherals, memory mapped I/O units and interfaces with the rest of components of the SCOC3 computer 

models developed by GMV. The coexistence of two OBSW mounted on top of two computers with LEON3 processors 

simultaneously working in a master-slave configuration and interchanging data through a space-wire interface is 

explained. Evidence of the proper working of the OBSW in the spacecraft operational simulator in the different AOCS 

modes is provided.  

 
INTRODUCTION 

 
The main purposes of operational simulators in space missions are: Mission Control System testing, preparation and 

validation of the operational procedures, training of operations staff and support to troubleshooting and maintenance 

during operations. A relevant characteristic of the operational simulator is that it allows running the flight OBSW as it 

were included in the actual spacecraft. This has made the operational simulators also essential for: operational 

validation of the satellite database, support to Spacecraft Validation Tests (SVTs), operational validation of the OBSW 

and finally the validation of OBSW patches/images before uploading to the spacecraft. Fig. 1 shows the location of the 

operational simulator inside a generic ground control centre and how the operational simulator is able to interact with 

the Mission Control System (MCS) reproducing all the TM/TC of the spacecraft. 
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Fig. 1. Location of the operational simulator in a generic ground control system for Earth observation mission 

 

COMPONENTS OF THE OPERATIONAL SIMULATOR 

 

As shown in Fig. 2, a high level decomposition of the operational simulator consists on specific spacecraft models for 

all the subsystems and a simulation infrastructure. 

 

 
Fig. 2. High level decomposition of the operational simulator 

 

The operational simulator is therefore characterised by the following aspects: 

 Models for AOCS, Propulsion, Data Handling, Thermal, Communications and Power subsystems. 

 The level of representativeness is primary driven by the need to allow the execution of the actual flight 

OBSW as in the real spacecraft. As example this makes necessary: 

o Emulation of the main computers of the command and control subsystem of the platform, 

including modelling of mass memory. 

o Reproduce all the TM/TC included in the Spacecraft Database (SDB) containing all the required 

flight configuration data. 

o Models of each on-board unit. All redundant and commutable items are represented. 

o Payload simulation limited to the OBSW bus interface and operational needs, (i.e. payload SW 

functionally modelled). 



 

 

 Environmental and dynamics simulation. This allows closed-loop testing of the AOCS flight SW in the 

emulated computer with AOCS units and dynamics models. 

 Simulate spacecraft TM/TC interface with the ground stations. 

Regarding the simulation infrastructure, both SEOSAT and Sentinel-5P operational simulators use 

SIMULUS/SIMSAT, ESOC's spacecraft simulation infrastructure. This infrastructure provides a development and 

execution framework. Among others, the most relevant elements of SIMULUS/SIMSAT are: 

 A Simulation Kernel, which provides SMP2 services: Scheduler, Time Keeper, Logger, Event Manager. 

 A man-machine interface for managing the simulation context, visualisation of model data, user control of 

the simulation via commands and scripts, saving and restoring simulation state (i.e., breakpointing). 

 A testing infrastructure and means to update the OBSW images and SDB handling. 

 A standard interface and libraries to simulate the ground stations. 

In addition, SIMULUS/SIMSAT favours re-use of existing models by means of design, catalogue and package files. 

Fig. 3 provides a logical overview of the different components of SIMSAT. At the epoch of starting the development of 

both SEOSAT and Sentinel-5P operational simulators, SIMULUS did not include any emulator of LEON3 processor. 

GMV decided to integrate the AirBus SimLEON3 emulator into SIMULUS infrastructure for its usage in both SEOSAT 

and Sentinel-5P operational simulators. 

 

 
Fig. 3. Schematic overview of SIMULUS/SIMSAT environment  

 

SIMLEON3 PRODUCT DESCRIPTION AND ON-BOARD COMPUTER MODELS 

 

SEOSAT and Sentinel-5P OBCs are based on the SCOC3 ASIC, and extended with a Power Module and a 

Reconfiguration Unit. SimLEON3 is an AirBus product capable of emulating a LEON3 processor specifically tailored 

for the SCOC3 architecture. This emulator covers several modules in the SCOC3 processor, as shown in Fig. 4, such as 

the Timers unit or the Memory Controller unit. SCOC3 units not covered by the emulator are developed as part of the 

operational simulator. Tight integration between all the processor modules is of outmost importance for the simulator to 

work properly. 

For redundancy purposes two identical OBCs are boarded into SEOSAT and Sentinel-5P. They operate in a master-

slave configuration (any of the two can play either role) and they run the same flight OBSW. They communicate 

through a devoted Space-Wire Inter-Processor Link; a different Space-Wire link is used to access resources on the slave 

OBC in order to maintain hot redundancy. Each OBC model contains an instance of the SimLEON3 emulator, allowing 

the simulator to execute the master and slave parts of the flight OBSW. 

The SimLEON3 product is distributed as a product package containing both development and run-time parts. It 

provides a C++ public API to access simulation state and device units; header files describing these services are 

provided for development. The run-time part is composed of a set of libraries compiled for the simulator target 

platform. 



 

 

 
Fig. 4. Schematic view of OBC architecture and coverage of the Processor models by SimLEON3 product 

 

Besides mere emulation of LEON3 processor and selected device peripherals, SimLEON3 allows for loading binary 

memory images, debugging of running software, inspecting memory contents, scheduling events, etc. Of these, it is of 

particular interest the access to the emulator scheduler, which provides a higher resolution than that of SIMSAT. 

SimLEON3 exported API is not SMP2 compliant, which makes integration in a SMP2 simulation environment a not 

direct process; the API being written in the C++ language contributes to ease the process, though. 

 

INTEGRATION OF SIMLEON3 PRODUCT WITH THE OPERATIONAL SIMULATOR 

 

The process of integrating an external emulator into a SIMSAT-based simulator is split into two main tasks. One of 

these tasks consists in effectively configuring the SIMSAT environment for loading the emulator run-time components 

before starting the simulation, so that emulator symbols can be found when the simulator is running. The other task 

corresponds to actually adapt models to make use of emulator provided services; this includes providing a means for the 

emulator to actually emulate the loaded software. 

 

Integration with Simulation Infrastructure 

 

A SIMSAT-based simulator can be executed as either a standalone process or integrated with the SIMSAT Kernel. In 

order to run the simulator as a stand-alone process all simulator models are compiled and linked together to produce a 

unique binary executable file. In this case, SimLEON3 libraries are directly linked into this executable file. The 

simulator based on SIMSAT Kernel is defined by means of a Kernel Architecture File (KAF) that describes, among 

other things, the libraries that need to be loaded and initialised at simulation start-up. SimLEON3 libraries are specified 

in this KAF so that they are readily available for SIMSAT to load them. In this case, the simulator symbols are 

dynamically linked at run-time. Regardless of the simulation mode, SimLEON3 being available as a set of pre-compiled 

libraries makes the process of integrating it with simulation infrastructure a straightforward process. 

 

Integration with Simulator Models 

 

The processor emulator is a key component in an operational simulator and is managed in a different way than the rest. 

As previously said, SimLEON3 API is exported as a set of C++ classes and interfaces. This fact eases integration into a 

C++ SMP2 environment. 



 

 

In order to abstract the data types and conventions used by SimLEON3, an adaptation layer is implemented and placed 

in between the emulator and the rest of simulator models. This adaptation layer comprises services of three categories: 

 Simulation services: comprise the family of execute methods and utilities for binary image loading and 

software debugging. 

 Unit access services: comprise methods for directly accessing registers of emulated units, as well as 

specific functionality of these units. 

 MMIO services: comprise a homogeneous set of methods for accessing units external to the emulator, 

being these emulated of not. 

While Simulation and Unit access services are provided by the emulator, MMIO services need to be provided by the 

surrounding simulator. 

Fig. 5 shows schematically where the adaptation layer lies within the simulator and how it is split. The Processor 

Emulator Proxy model is mainly concerned with Simulation services. This model complies with the proposed 

architecture in REFA. 

The I/O Proxy models are concerned with MMIO services. Since SimLEON3 is specifically tailored for SCOC3 

architecture, it routes every MMIO operation through a different interface representing a region in the memory map (i.e. 

a specific bus or device unit); an I/O Proxy model is instantiated for each one of these interfaces. 

Unit access services are illustrated with ICTL1 Proxy and GPIO Proxy models. As previously stated, ICTL1 and GPIO 

are device units emulated in SimLEON3; they both are accessed from different simulator models. In order to maintain 

clean interfaces and isolate the different parts of the adaptation layer, a different adaptor model providing a specific 

interface is developed for every emulated unit. 

 

 
Fig. 5. Depiction of SimLEON3 integration in a SMP2 environment 

 

Integration with Simulator Scheduler 

 

A particularly useful feature of using an external emulator and specifically of SimLEON3 is that they grant the 

simulator access to fine grained timed events. The SIMSAT scheduler provides resolution of nanoseconds and is used 

for triggering one-shot events of any period and cyclic events with period in the order of microseconds. Some device 

units require greater accuracy for working properly with the running OBSW. Fig. 6 shows an example of combined use 

of SIMSAT and SimLEON3 schedulers. 

In SEOSAT and Sentinel-5P simulators, correct implementation of 1553BCRT unit is essential to achieve an accurate 

and realistic simulation, as it controls data exchanges between the DHS subsystem and the rest of S/C subsystems, in 

particular the AOCS subsystem. This unit implements a WAIT instruction that halts instruction execution by a few 



 

 

nanoseconds; at the end of the halt period, an interrupt is raised in the processor for the OBSW to know about this. 

Since emulator run cycle is several orders of magnitude greater than the possible arguments to WAIT, SIMSAT 

scheduler is not an option for simulating the WAIT delay; SimLEON3 scheduler is used for this purpose. 

The synchronisation signal scheduled by SEOSAT and Sentinel-5P OBSW has a frequency of 16 Hz and is provided by 

the SCTM unit. This signal is used by the OBSW to perform cyclic operations; therefore, it is essential for an accurate 

simulation. Although SIMSAT scheduler could cope with such a frequency, the importance of this signal makes 

SimLEON3 scheduler better suited for triggering the associated interrupt. In contrast, the 1 Hz signal in charge of 

updating the internal coarse time register is of much less importance, and is assigned to SIMSAT scheduler. 

 

 
Fig. 6. Example of combined use of SimLEON3 and SIMSAT schedulers 

 

On-Board Computers in Hot Redundancy 

 

As previously stated, SEOSAT and Sentinel-5P Data Handling Subsystem includes two hot redundant OBCs in master-

slave configuration. Communication between processors is achieved through a dedicated Space-Wire link. Slave 

processor idles until it receives a work package from master. 

This feature of the DHS is simulated using two instances of the emulator, instead of modelling one of the computers 

only functionally. Loading two emulator instances increases the memory requirements of the simulator; executing both 

emulators concurrently greatly decreases overall performance. In order to avoid this performance penalty a technique is 

developed to detect when a processor is idling. This technique is similar to that typically offered by processor 

emulators. Dedicated behaviour is added to the Space-Wire terminal model to detect when a petition arrives to the slave 

processor, so that it is effectively awakened. Fig. 7 shows a timeline where slave processor is executed only when 

strictly required plus a small period to perform idling detection. 

 

 
Fig. 7. Execution of slave OBC on request by master 

 

 

 



 

 

 

OPERATIONAL SIMULATOR CAPABILITIES 

 

Interaction with the Mission Control System 

 

The environment composed of the Mission Control System (MCS) connected to the operational simulator is very useful 

for the testing of the MCS, the preparation of the operational procedures and the training of the operation staff. Fig. 8 

presents this environment. In this configuration the MCS user can operate and monitor the operational simulator 

through TM/TC as they were operating the actual spacecraft. In this environment, the simulator can be also directly 

operated by the user to simulate failure injection in any spacecraft unit; the effects of this failure in TM can be 

monitored from the MCS team. In general, for the user of the operational simulator, there are two ways to interface with 

the spacecraft models: via a MMI and/or through scripts.  

 

 
Fig. 8. Environment composed by the Mission Control System and the operational simulator 

 

AOCS OBSW Closed-Loop Testing 

 

All the models in the operational simulator are able to work in closed-loop (see Fig. 9); i.e. dynamic models, sensor and 

actuators models and real OBSW are working together, ensuring the proper working of the OBSW in all operative 

modes and its transitions.  

For SEOSAT and Sentinel-5P missions, the AOCS SW mode of the spacecraft is IDLE on start-up, where it performs 

OBSW configuration, spacecraft separation from launcher and solar array deployment. Later, it moves to Acquisition 

Safe Hold mode, where the spacecraft initializes the AOCS modules to determine and stabilize and the spacecraft 

attitude. It then moves to Normal Mode, where the spacecraft is completely functional. 

In Autonomous Operation, the spacecraft will transition between Sun Pointing (SUP) mode and Geocentric Accurate 

Pointing (GAP) mode when in eclipse. When commanded, the spacecraft performs data acquisitions over a specific 

geographic area, by means of a transition from SUP/GAP to Manoeuvre submode (MAN) and then to Custom Accurate 

Pointing (CAP). The spacecraft automatically performs the transition between SUP and GAP, when it comes in and out 

of the eclipse region of the orbit, respectively. A typical data acquisition manoeuvre will imply the transition: SUP  

MAN  CAP  SUP. 

 

 
Fig. 9. OBSW working in closed-loop with the rest of simulator models 

 



 

 

Therefore, a complete AOCS closed-loop validation of the operational simulator includes the transition between IDLE, 

Acquisition Safe Hold and Normal modes, and exercises all of the previously depicted submodes, including a data 

acquisition manoeuvre. The results of a closed-loop simulation, using the operational simulator are presented in the Fig. 

10. 

 

 
Fig. 10. Simulation results of an example of a complete AOCS closed-loop validation test 
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