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INTRODUCTION 

 

Check out systems and SCOE (Specific Check-Out Equipment) controllers provide numerous ways of visualising and 

monitoring a system under test. Standard features include synoptics and out-of-limits monitoring but it is also common 

for users to define other custom actions that, for example, process specific telemetry packets or launch automatic test 

sequences.  The logic that drives this behaviour is encapsulated in the AIT working environment, either through 

database definitions or through scripts developed by the AIT engineer. However the ability to validate these features 

and tools is often compromised by the lack of a simple method to generate appropriate test data. 

 

Simulators are of course in widespread use on space projects, and can be used to validate some function within the 

Central Check-out System (CCS) or SCOE controller.  In reality the availability and complexity of external simulators 

means that they are not always a suitable choice:  scenarios must be programmed into the simulator to achieve the 

required state (which can be just as demanding as working with a real system), and in some cases the ability to simulate 

the data stream that is required may simply not exist.  Couple this with the fact that some CCS testing requirements may 

only come to light days before they are needed and it becomes clear that a simple, quick, built-in simulation function 

would be highly valuable to the AIT engineer. Knowledge we have gained through direct participation in spacecraft 

AIT activities has allowed us to identify and address this basic need of checkout system end-users.  

  

In this paper we present a feature of the TERMA CCS5 & TSC products which integrates a simple yet powerful 

simulation function into the test sequence language itself.  We show how it can be used to inject user-defined data 

patterns into the system based on packet structures that are driven by the mission database using just a simple high level 

syntax. This feature allows an end-user to very quickly construct the simulation scenario that they need in order to 

validate aspects of their AIT environment to a high level of confidence.  But its uses are not just limited to those of self-

validation.  We also demonstrate how this simulation function can be harnessed by a SCOE controller in order to 

publish low level bus data to the rest of the system as a high level telemetry packets and parameters. 

 

TSC and CCS5 Applications 

 

The simulation functions described below are implemented in the context of the TERMA TSC and CCS5 software 

products.  TSC is a lightweight package commonly deployed as a SCOE controller for instrument or sub-system level 

check-out activities. CCS5 is a multi-user CCS designed to coordinate larger-scale activities at system or spacecraft 

level.  Both applications share the same code base and the same principle of operation. They each offer the same 

integrated test sequence language and provide the same views for telemetry parameter display and monitoring. TM and 

TC definitions are defined in MIB database ASCII format [1] (the same as that used by the SCOS-2000 system) and 

incoming telemetry packets are identified by the rules of the MIB tables. 

 

The test sequence language used by TSC and CCS5 is termed uTOPE, and it is a re-implementation of the original 

TOPE test sequence language based on TCL as used in SCOS-2000 systems.  As well as supporting the original TOPE 

commands, the development of uTOPE for modern platforms has provided the opportunity to add additional functions 

to the language including those related to telemetry packet simulation. 

 

TM PACKET INJECTION 

 

In a live setup external data is delivered to TSC or CCS5 via a deployment-specific EGSE carrier protocol, for which 

there are several industry standards.  The specifics of the EGSE protocol are implemented via a plug-in module that 

effectively removes any encapsulation and delivers the TM or TC packet to the system.  Typically the delivered TM 

packets will follow a CCSDS or PUS packet [2] format. 

 

The uTOPE test sequence language provides a method for injecting data into the system as if it had been received 

externally.  More precisely, binary data (representing a TM packet) can be self-injected at an entry point analogous to 

that of the plug-in module, meaning that TSC or CCS5 receive the data exactly as if it had been delivered to the system 

via the carrier protocol.  Using this function a user can define any arbitrary or deliberate packet data that will be 

subsequently archived and processed by the system in exactly the same way as packets originating from an external 

provider.   To retain traceability of injected data, injected packets are tagged at creation with a dedicated ‘injection’ 



property which is visible in the packet archives.  Using this property it is always possible to distinguish between self-

injected packets and those which have been received from external sources. 

 

 
 

Fig. 1. Illustration of TM Packet Injection from a test script 

 

Injection Command Syntax 

Packet Injection is managed using the uTOPE command processtmpacket. In its simplest form (1) it specifies a binary 

string to inject. The system will then attempt to identify and process that binary data as a TM packet. 

 

 processtmpacket <raw>   (1) 

 

The uTOPE language itself is an extension to the generic TCL scripting language (which is also fully available in the 

working environment) so scripting file access is trivial, and there are also helper functions to convert strings from 

hexadecimal to binary. With this toolset it is little work to create a script that reads packet definitions from a file and 

injects them into the system.  This makes it very easy to inject ‘real’ data that has been saved to a file (perhaps by 

another system), or to manage specific scenarios of packet data as separate files. 

 

The basic syntax can be extended to specify a packet-ID corresponding to the PID_SPID field in the MIB database. 

 

 processtmpacket <raw> <spid> (2) 

 

When used in this form the injected data given by <raw> is processed as if had been identified as the packet <spid>. 

The APID, PUS Type and Sub-Type associated with the <spid> in the MIB database are assigned to the packet and the 

packet cargo is processed according to the packet structure associated with <spid>.  Essentially, this option skips the 

identification logic in the TM processing chain, meaning that the data given by <raw> does not need to specify a 

representative packet header; identification can be forced at run-time. 

 

Extending the syntax again the <fabHdr> Boolean flag now specifies that the system should create the packet header 

dynamically and prefix it to the data given by <raw>. 

 

 processtmpacket <raw> <spid> <fabHdr> (3) 

 

In this case the packet header will be created based on the MIB definition of packet <spid>, which includes the APID, 

(and Type and SubType fields for PUS packets).  Packet Length, Source Sequence Count (SSC) and Cyclic 

Redundancy Check (CRC) checksum fields will also be filled dynamically.  This format of the processtmpacket 

command is particularly effective for publishing low level bus data to the system as a TM packet where <raw> might 

consist of the datawords retrieved from a Front End interface. This is discussed later. 

 

The syntax can be extended again with the <fabBody> flag, which instructs the system to dynamically generate the 

packet body as defined by the structure associated with <spid> in the MIB database. In this case <raw> would simply 

be an empty string. 

 

 processtmpacket <raw> <spid> <fabHdr> <fabBody> (4) 

 

The system will create the packet body using the current values of the telemetry parameters and then prefix this body 

with the corresponding header as already described.  So in effect it is possible to generate a fully populated and fully 

coherent packet (header, body and checksum) for any <spid> using just a single line of code and without having to 

explicitly define the fields within the packet. 



 

In its most complete form the processtmpacket command allows the user to override the default packet body generation 

and specify his own values for parameters inside the packet itself. 

 

 processtmpacket <raw> <spid> <fabHdr> <fabBody> <rawParams> <engParams> (5) 

 

Here, <rawParams> and <engParams> are standard TCL (associative) arrays which define the values of specific TM 

parameters using the parameter name (PCF_NAME) as the array index and the parameter value as the array value.  

Parameters can be specified in terms of raw or engineering values via the appropriate arrays.  The beauty of this 

approach is that the user can refer to each parameter simply by its name in the arrays (as defined in the MIB) and need 

not be concerned with packet structure itself; parameters will be automatically placed in the correct locations in the 

packet body when the injected packet is created.  This implementation is also designed to be flexible and does not 

require every parameter in the packet to be defined; any parameters that are not specified in <rawParams> or 

<engParams> are simply filled in using their current values in telemetry. 

 

Should finer control be required additional options allow the user to override fields with their own values. The <obt> 

and <ssc> options allows the user to define specific values for OBT (On Board Time) and SSC that should be used in 

the packet header when the injected packet is created. 

 

SELF VALIDATION 

 

The feature set described above provides the AIT engineer with a simple yet effective method for simulating arbitrary 

telemetry streams via a test script.  Packets can of course be injected when the system is ‘offline’ and unconnected to 

real SCOEs meaning that the AIT working environment can be self-validated completely independently from the wider 

ground system.  Typical uses might include verification of: 

 

• out-of limit detections 

• synoptic behaviour 

• automatic test sequence triggering 

• post processing triggered by certain packet instances 

 

The fact that the simulated packets are managed by test script also means that validation scenarios can be adapted 

quickly, or even dynamically. For example, the database can be interrogated via the test sequence language itself in 

order to know the out-of-limit values to simulate.  Importantly, the packet generation function is database driven, 

meaning that should a packet structure or transfer function change it will automatically be taken into account; there is 

no impact on the test sequence itself.  All of this drives towards self-validation possibilities that are both simple and low 

maintenance. 

 

FURTHER APPLICATIONS 

 

Self-validation is an obvious application, but the ability to inject user-defined TM packets can also be used to 

implement more sophisticated simulation scenarios within the CCS working environment. 

 

Simulating TC Verification 

 

A common obstacle when trying to validate test sequences in an ‘Offline’ configuration is that telecommands will fail, 

either because the system is disconnected from SCOEs, or because there is no system or simulator generating the 

appropriate responses to a telecommand.  When a telecommand request is made from the CCS the TC has to transit 

various verification stages. Some of these relate to the ground system and are managed by the plugin and EGSE 

protocol; others relate to the flight segment and are derived from responses by the On-board software (usually 

consisting of PUS service-1 TM packets). 

 

To facilitate offline validation the CCS5 and TSC environment provides a mechanism for sending telecommands in a 

modelled mode.  When a TC request is made in modelled mode (either manually or via a test sequence) it is injected 

into the system as normal, but is never actually delivered to the plugin.  Using the uTOPE updatecommand statement it 

is then possible to force the status of any of the TCs verification stages from a test script.  By adopting this method a 

test sequence can mimic the verification triggers that would normally come from other parts of the ground segment, so 

the system behaves as if connected to a real receiving entity.  Fig. 2 shows this schematically.  

 



 
 

Fig. 2. Simulating telecommand responses in an offline configuration 

 

Verification stages relating to the space segment can be self-simulated using the packet injection feature described 

previously. In the uTOPE test sequence language it is trivial to subscribe to telecommands and intercept them with a 

callback procedure whenever a TC request is made.  This callback procedure can identify the sent TC, extract its 

header, and use it to compile the body of a PUS service-1 telemetry packet that will be injected into the system at a 

given time in the future.  With a small amount of effort it is possible to simulate (script) a complete verification profile 

for any arbitrary telecommand. 

 

The ability to self-simulate telecommand responses means that the AIT engineer is truly autonomous.  Development 

cycles can be performed more quickly and test sequences can be validated to a higher level of confidence before being 

used on the specimen itself.  

 

Publishing Low-Level Bus Data 

 

At subsystem level a SCOE controller will often interface with the system under test using a low level hardware 

protocol. A typical example might be a Milbus-1553 controller where the unit under test is controlled and monitored via 

dataword messages on the bus.  In such scenarios the system receives data in its native ‘raw’ format, but there is often a 

need to express this data in terms of parameters in order to monitor and exploit them in the AIT environment. 

 

One way to achieve this is to define an ‘internal’ telemetry packet definition that maps (for example) the 32 datawords 

of a Milbus message onto a set of parameters with their own encodings and transfer functions.  By using the 

processtmpacket in form (3) and specifying the Milbus message as the raw binary string the low-level data will be 

injected into the system as a TM packet and via the standard TM processing chain its content will be made available to 

the system in the form of TM parameters, as depicted in Fig. 3.  The main work required to implement this is in the 

‘internal’ TM packet and parameter definitions, which need to describe the information in the bus data. Thanks to the 

ability in CCS5 or TSC to combine multiple databases at run-time these definitions can be managed in a separate MIB 

database within the AIT environment. 

 



 
Fig. 3. Publishing low level bus data to the system as telemetry parameters using processtmpacket 

 

Simulating a Spacecraft Interface 

 

Very often the early phases of subsystem development will be performed in isolation using a dedicated instrument 

SCOE or EGSE to communicate with the system under test uniquely via bus-level data structures.  At this stage a low-

level interface with the hardware is necessary for testing and debugging, and validation test scripts are defined within 

this context. 

 

However, once integrated within the spacecraft (or simply a larger system) the low-level databus is no longer directly 

addressable and the instrument must typically be commanded and monitored using high level TM and TC (e.g. PUS 

formatted packets).  The transition from a low-level bus interface to a high-level packet interface can often be a barrier 

to re-use and dictates that two families of test/operating procedures need to be developed. However, by using the packet 

injection function the SCOE controller itself can actually implement the high level packet interface. 

 

In the previous example we showed how raw milbus data could be published back to the system as telemetry parameters 

using an internal set of packet definitions.   If we now imagine that these parameters need reformatting into a spacecraft 

PUS packet structure it is simply a matter of performing a second round of packet generation, this time referring to a 

<spid> that defines that PUS packet.  A test script can easily instantiate a TCL array of <rawParams> based on the 

current values of the Milbus parameters, and use this to populate an injected PUS TM packet.  In practice the TM 

packet would be generated using the formattmpacket command, which is analogous to processtmpacket except that it 

returns the binary string of the TM packet rather than injecting it. This binary string can then be handled in a test 

sequence and routed from the SCOE controller to the CCS. The result is that the CCS will see high level PUS TM 

coming from the instrument SCOE. 

 

To complete the loop, in the telecommand direction it is relatively straightforward to run a handler script on the SCOE 

controller to process high level PUS TC from the CCS that are destined for the system under test. Contents of the PUS 

TCs can be translated into low level instructions on the databus that are sent via the local interface to the hardware. 

 



 
 

Fig. 4. Reformatting low level bus data and distributing it within a high level PUS packet structure 

 

In essence the SCOE controller is simulating the role of the On-board Software, packaging low-level data structures 

into PUS packet formats and then transmitting them to other entities.  This approach reduces the need for dedicated 

simulators and maximises the potential for procedure re-use during the AIT campaign, even as far as allowing use of 

flight operations procedures in an AIT environment. 

 

LIMITATIONS 

 

The processtmpacket and formattmpacket functions do allow variable packets to be injected, but only when specified as 

a raw binary string. It is not currently possible to define the content of a variable packet using the <rawParams> and 

<engParams> options.  (However, packets with supercommuated parameters can be defined in this way). 

 

SUMMARY 

 

The simulation functions presented above allow the user of a CCS or SCOE controller to inject user-defined telemetry 

packets into the system via the test sequence scripting language itself.  We have shown how these functions can be used 

for self-validation, for simulation, and for facilitating the manipulation of low level bus data. 

 

Using TM packet injection and TC modelling functions the AIT engineer can work autonomously and is neither 

dependent on the availability of an external simulator, nor restricted by its capabilities.  The simple syntax of the 

simulation commands and the flexibility of the TCL scripting language mean that the construction of test scenarios for 



self-validation is quick and intuitive to implement. Scenarios can be tailored to meet the specific needs of the AIT 

engineer and used to validate the AIT environment to a high level of confidence. 

 

By using the packet generation function in association with low level bus data it is possible to publish telemetry 

parameters to the system quickly and efficiently via the standard TM processing chain.  Using the same technique, low 

level bus parameters can be packaged into high level PUS packet formats with minimum effort, meaning that the SCOE 

controller application can simulate the function of on-board software.  The details of parameter positions and encoding 

are all confined to the TM/TC database and need not be managed at all at test sequence level.  Packet simulation is 

database driven meaning that simulation scenarios will automatically take into account any changes to packet 

definitions. 

 

FURTHER DEVELOPMENT 
 

It is becoming an increasingly common requirement to work with TM and TC data at frame level as well as packet 

level.  A natural extension of the simulation functions would be to develop similar tools for the generation of TM and 

TC frames for which there are currently no lightweight simulators.  

 

CONCLUSIONS 
 

The main benefits of the packet injection functions in the CCS5 and TSC products can be summarised as: 

 

• Autonomy: the end-user is self-sufficient and not dependent on external simulators. 

• Quality of Validation: the end-user can inject any TM packet content in order to validate an aspect of the AIT 

environment (synoptics, limit checking, automatic test sequence triggering etc.)  Simulation scenarios are 

scripted, automated and repeatable. 

• Self-Simulation: Responses to telecommands can be easily and accurately simulated meaning that test 

sequences can be validated ‘offline’ to a high degree of confidence. 

• Interface-Simulation: Low Level bus data can be published to the system efficiently as telemetry parameters. 

SCOE controllers can package bus data into TM packets to expose a high level packet interface to the rest of 

the system.  Checkout activities can use high level operational test sequences in conjunction with instrument 

level SCOEs. 

• Low Maintenance: Because the packet generation algorithms are database driven changes to packet structures 

are automatically taken into account with no impact in the test scripts themselves. 

 

Together these improvements to the end-user workflow bring consequent gains in quality and productivity, and improve 

the overall AIT efficiency during preparation activities. 
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