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ABSTRACT 

For many years, efforts were carried out for standardization (SMP2, SSRA, REFA, etc.), and space models’ integration 

(e.g. MOSAIC) in order to provide interoperability between systems. However, due to the interdisciplinarity of aerospace 

projects, the need for consolidation and adaptation in Simulation Environments (SE) will always exist. Having as 

objective the creation of a co-simulation in which each application executes into its native environment, the need for 

bridging separate simulations, the ability of unified control and coordination, as well of data sharing between them, 

becomes of great significance. To meet these demands, adaptation of non-SMP2 compliant space applications to the SE 

is indispensable. Creating a standardized interface and enabling this interconnection includes deploying an SMP2 specific 

interface and an application specific plugin to expedite the two parties’ communication. SimBridge, is an SMP2 meta-

model, designed to provide a flexible and seamless interfacing for SMP2 SEs. It is a configurable, scalable, and easy-to-

use software that can interconnect any external application (EA), just by providing a language–specific library or toolbox 

to handle the message transfer for each such application. Currently, SimBridge binds the SIMSAT engine with external 

applications via a TCP connection and provides full-fledged services as: XML message interchange, parsing and 

evaluation, requests’ handling, synchronization and execution, and finally returning results to the origin. 

 

INTRODUCTION  

System modeling and simulation tools are pivotal technologies in the engineering process for aerospace systems. As 

multitude of stakeholders are involved and different disciplines intersect, multiple views of engineering models are 

revealed. Furthermore, there are systems modeling requirements that demand high fidelity and necessitate the use of other 

environments or frameworks that are specialized for implementation, visualization and/or reporting purposes. For 

instance, in the Functional Engineering phase of an aerospace project, MATLAB/Simulink is often used by Model 

Supplier teams to deploy cutting-edge simulation models. For calibration and validation purposes, these models could be 

exploited across projects in several phases of System Engineering, as in Mission Performance Simulators (MPS) and 

Software Validation Facilities (SVF) with or without modifications and upgraded fidelity. Thus, the ability to integrate 

models from commercial off-the-shelf (COTS) tools or open source software (OSS) into a space simulator, such as 

SIMSAT, is becoming increasingly important.  

Multiple efforts have been carried out for standardization in the field of space operational simulations. The most notable 

are the SMP2 standard and the REFA developed by ESA/ESOC in an attempt to standardize model interconnection and 

communication along with the general architecture of a generic spacecraft simulation. Furthermore, ESA/ESOC has also 

attempted to define a standard that allows formalized data storage and distribution of simulation assets [10]. In recent 

years, notable efforts outside ESA have also been made to define standard and meta-modeling paradigms in the field of 
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space operational simulations. Firstly, a study was undertaken in 2010 [9] that had to do with the development of a Python 

and C++ hybrid simulation based on the SMP2 standard. According to this simulation, a blueprint for defining interfaces 

between the simulation models and the framework has been described. Finally, an approach for model integration with 

the common simulation framework SIRIUS is investigated in [8].  

On the other hand, many efforts have been made to extend the capabilities of space simulators. A hybrid simulation 

technology is described in [1] that extends flight simulations by providing a dynamic programming interface and enables 

more than one programming languages within a simulation. Furthermore, as most individual engineering disciplines have 

their own modeling methods and tools for design, analysis or simulation, there is need of an integrated model-based 

approach at the system level that ensures overall consistency and proper coordination. This concept is discussed in depth 

in [2]. Finally, the Dshell++ [3] is a physics-based simulation framework that wraps a Python interface around the C++ 

classes so that simulation setup and control can be completely script-driven. However, the space industry is not unique in 

these aspects. Similar challenges are present in other industrial sectors where complex systems are produced, such as 

defense, power systems’ simulations, etc. More information for the aspect of co-simulation platforms for smart-grid 

applications can be found in [4]. The present paper focuses on the bridging concept of space simulators with various 

external tools and applications. 

The challenge in the concept of bridging space simulators is to create a solution that would integrate a variety of 

simulators, modeling frameworks, databases, visualizers and reporting systems into a simulation that is distributed across 

various nodes. Another activity associated with this challenge is the identification of the EAs that offer an application 

programming interface (API) or a communication link and could benefit from a bridging with a space simulator, and vice 

versa. A third challenge related to the bridging concept is the plethora of EAs to take into account and the correspondingly 

large variety of communication protocols that are used. There are several ways to integrate simulations, including High 

Level Architecture (HLA) [11], which was developed specifically for distributed simulation systems, and standard inter-

process communication techniques and protocols including, shared memory, TCP/IP or COM. Lastly, an important issue 

in the creation of a co-simulation environment is the synchronization of different simulators with separate clocks and 

timing engines. In that case, data exchange must take place in conjunction with the associated timestamp (e.g. simulation 

time), in order to specify the time for which data are valid.  

The SimBridge infrastructure aims to interconnect External Applications (EAs) with Simulation Environments (SEs) and 

attempts to address all the aforementioned problematic areas. In Fig. 1 the SimBridge concept is depicted.  Currently, 

development is mainly focused in the interconnection of several EAs such as Celestia and Python scripts with the SIMSAT 

SE. The SIMSAT environment is aimed to be supported both in the SMP2 space, i.e. simulation models, and the 

simulation’s kernel to support the control of the simulation via CORBA mechanisms. For example, a model can be rapidly 

developed using Octave and immediately used within the SE itself with no conversion. Thus, the bridging concept is 

considered of high value in early stages of a simulator’s design and development, since engineers of varying scientific 

fields can test their models within the SE with little to no effort and only minimal knowledge of the SMP2 standard and 

its inner workings. The bridging concept can also be used from the SMP2 models in order for them to use external 

functionalities. For example, an SMP2 model could use the bridge in order to execute an external Python script and get 

its results. This allows developers to make usage of higher level functionalities that are offered from external tools and 

operate outside the context of the SMP2 standard for computation purposes. 

 

 

Fig. 1. SimBridge Concept 



 

This paper is organized as follows; in section “SimBridge Application”, the major requirements of SimBridge application 

are described and a delineation of the SimBridge’s major elements is given. A demonstration of SimBridge usage in 

conjunction with Python scripts, and a Celestia application based on Lua scripts, is provided in section “Use Case”. 

Finally, in section “Future Steps”, our view for SimBridge’s coming expansions is cited. 

 

SIMBRIDGE APPLICATION 

In order for the SimBridge architecture to be imported in the SIMSAT infrastructure all the appropriate space standards 

are applied in terms of documentation and project workflow. More specifically, for aspects concerning the space software 

engineering including requirements definition, design, production, verification and validation the ECSS-E-ST-40C was 

followed.  

 

Major Requirements 

The principal functionality of the SimBridge software is to provide bidirectional interfacing between SEs supporting the 

SMP2 standard and non-compliant to space standards EAs. Currently, the SimBridge application is bound to SIMSAT 

and acts as an SMP2 meta-model. Bidirectional interfacing involves handling requests with direction from EAs to 

SIMSAT (incoming requests), as well as requests from SIMSAT to the EAs (outgoing requests). More specifically, the 

major requirements of the bridging concept are: 

 Simulator’s data retrieval/modification. SMP2 published fields shall be able to be delivered/modified to/by the EAs 

and SMP2 services can be used to retrieve kernel data such as latency, speed factor, and simulation state.  

 EA’s data retrieval/modification from the simulator. 

 SMP2 method’s execution and events scheduling under EA’s demand. 

 Execution of external functionality under simulator’s request.  

 Formalized message’s structure that contains simulation timestamp for data produced in order to synchronize and 

coordinate the co-simulation. 

The SimBridge software provides all aforementioned features but is not limited to them. An additional SimBridge feature 

is the ability to perform the data retrieval or the functionality execution in a synchronous or asynchronous way. A 

synchronous operation dictates that the incoming/outgoing request will be performed via direct function calls and the 

thread that initiated the operation will wait for the task to finish before continuing. On the other hand, an asynchronous 

operation implies a low priority request and the caller will not pause upon task’s completion. The goal is to free the main 

thread so that it can continue to respond to other requests, rather than freezing. Thus, the asynchronous mode of operation 

is a feature that can accelerate the system’s throughput, as slow or expensive processes shall run asynchronously on a 

background thread. 

Moreover, the SimBridge application supports the widely used TCP/IP protocol and provides an application specific 

library to facilitate the EA’s connection. Although TCP/IP protocol is its primary communication protocol, the SimBridge 

is not limited to its usage. Instead it is designed in such abstract way, that it can be easily extended and support additional 

communication protocols, such as CORBA and HTTP or inter-process communication techniques, such as shared 

memory and pipes. Currently, the requests are exchanged through TCP sockets in plain text encoded in UTF-8 and 

formatted in XML. This serves three purposes; first, the data remain structured with XML and can be serialized and de-

serialized with little effort; second, they can be transferred through sockets or any other inter-process communication 

mechanism in a platform-independent manner; and third, they can be easily inspected by a human operator during 

troubleshooting.  

 

Trade Offs Towards Architecture Definition 

During the requirements’ definition phase, a logical design of the infrastructure had to be achieved and several decisions 

had to be made in terms of the complexity and the functionality of the software. The first issue that had to be resolved 

was to determine where the software shall exist and how it shall connect with the SEs and the EAs. Initially, it was 

considered that there should be one persistent instance of the infrastructure’s “core” that resides on a server where the 

SEs connect to it via specific. The EAs were considered to utilize communication protocols such as TCP sockets, cloud 



services etc. to connect to the infrastructure. However, this approach was considered to not be scalable enough by adding 

many obstacles and constraints and also required a server that could be used. It was instead decided to have one SimBridge 

instance per SE while allowing this instances to easily communicate among them with the use of the communication 

mechanisms. 

The second design decision that had to be made was in regards with how the aforementioned SimBridge instance is 

created. Since the SIMSAT SE was the target platform of the first version of the framework, there were two options. The 

first one was to have a CORBA component that shall reside in the simulation’s environment kernel and the second choice 

was to have an SMP2 model or class that shall reside in the simulator itself. While both options are viable, it was decided 

that an SMP2 model should be primarily used. There are several reasons that led to this decision. Firstly, it was considered 

that the users of the EAs will primarily desire to exchange data and control the simulator’s components. While that is also 

possible from a SIMSAT kernel component, it was deemed more straightforward from the perspective of an SMP2 model 

as it has direct access to all the desired interfaces and does not rely on direct CORBA calls as would be the case from the 

perspective of a SIMSAT component. Furthermore, the SMP2 adapter provides all the main functionalities of the kernel 

to the models and thus enables the models to have information and some control over timing information, speed factor, 

simulation state etc. Last but not least, the SMP2 model was considered more “generic” in terms of implementation. As 

many SEs adopt the SMP2 standard, the model can be easily ported to other environments with minor modifications. 

Another issue under consideration was the system’s configuration. Generally many file formats are used, such as CSV, 

XML, binary or YAML. The XML format was finally chosen as it can be strictly defined and easier to be validated due 

to XML schemas. Although XML files are usually large in extend, it is easier to be processed and more human readable 

as they are string based files.     

 

Architectural Design 

The SimBridge infrastructure is divided in four core modules, namely, the Interface Module that is responsible for the 

connection with the SE, the Communication Module that is responsible for the connection of EAs with the infrastructure, 

the CLI Module that is responsible for auxiliary facilities such as logging and user control of the infrastructure and the 

Management Module that is responsible for the “core” functionalities such as marshalling, scheduling, parsing etc. An 

overview of the SimBridge logical architecture is presented in Fig. 2. 

The Interface Module is the communication channel between the SE and the rest SimBridge components. It supports 

interfacing of SMP2 space where SMP2 models and SMP2 adapter exist, and kernel space interfacing, which for the 

SIMSAT case CORBA technology is applied. Its first responsibility is to provide simulator’s models data or operations 

requested from the EAs via the Dynamic Invocation mechanism. Its second responsibility is to provide an appropriate 

interface to the simulator’s models so that they can request data or operations from EAs. 

 

 

Fig. 2. SimBridge architecture 



 

The Management Module is the main component of the SimBridge infrastructure and acts as its kernel. Its first 

responsibility is to synchronize and execute the requests that are made either from the SE or the EAs. This is achieved by 

the Synchronizer and the Executer components. The Synchronizer component holds all the requests that are to be executed 

in a list and according to a time-base it removes requests from this list and provides them to the Executer for handling. 

The Synchronizer can be configured by the user in order to provide a requests’ lifespan and define priorities according to 

a request’s type and lifespan. The Executer component is responsible for executing the requests provided by the 

Synchronizer. To that end, it utilizes the Interface Module for requests that are targeted to the SE or the Communication 

Module in the case that the request is targeted to an EA. Since requests are generally independent from each other and 

they can be of synchronous nature, thus locking the Executer until their execution is completed, the Executer features a 

user defined number of threads in order to handle them in a fast and parallel manner.  

Since communication among the SEs and the EAs is based on XML files, the Management Module offers an XML Parser 

and a Database component. The Parser component is responsible for reading and writing these XML files based on strict 

XML schemas. The Parser also provides a set of helper functions to the rest of the infrastructure that allow the retrieval 

of certain information structures. Finally, the Parser makes heavy use of the Database component in order to store the 

required information. Currently, the Database component is a set of maps and vectors that are used to store the 

configuration file of the SimBridge infrastructure and the configuration files of the EAs. The Configurator component 

processes configuration files and performs respective initializations of the SimBridge application. 

The Communication Module is responsible for the communication of the SimBridge infrastructure with the EAs. It is 

comprised by one main component and an interface. The main component of this module is the Communicator and is 

responsible for instantiating all the available communication protocols, providing incoming requests to the Synchronizer 

for execution and dispatching outgoing requests to the appropriate EA. The ICommunicate interface provides a set of 

functionalities that shall be provided by every available communication protocol and as a result each communication 

protocol shall implement it. Through the last Module named CLI, a human operator has the ability to manage external 

connections, to control SimBridge’s operation and invoke external model commands during runtime. All this issues are 

addressed from the Commander sub-element of CLI Module. The second sub-element named Recorder, is responsible for 

printing informational, debug and error messages regarding the particular SimBridge instance. 

 

 

Fig. 3. Sequence diagram of incoming request to be handled in a synchronous way 

 

Fig. 3 depicts a simplistic paradigm of the actions’ sequence that have to take place in order to an EA achieve to obtain 

data coming from an SMP2 model in a synchronous way and via the SimBridge application. Since the request is about to 

be executed in a synchronous way, the EA shall pause its execution and wait until the answer’s arrival. The request can 

be matched only with an answer due to the message’s unique identifier that it carries. In SimBridge’s side, after the 

Communication Module delivers the new incoming request to the Management Module, it returns back to listen for more 

connections and new messages. The Executer’s thread that is about to handle a synchronous request shall ask the data 



from the Interface Module, and it will remain idle for as long as it takes to the Interface Module to return the data. As 

soon as the data are delivered to the Management Module, it shall create a new answer message and forward it to the EA 

through the Communication Module. 

 

USE CASE 

In order to demonstrate the capabilities of this novel tool, a simple demonstration configuration was assembled. This is 

aimed to demonstrate three separate capabilities: First, to implement a model’s functionality outside the SMP2 space, 

secondly to control said model from an EA, and third, to draw data in order to use them for visualization. The system was 

composed of the following components executed in parallel: 

 The SIMSAT program, including a SimBridge instance and an internal SMP2 model. 

 A Python script that implements the above model’s functionality. 

 The Celestia application to visualize the position and direction of the model. 

The Python script as well as the Celestia application connect to the simulation via the SimBridge model using sockets. 

Python was chosen as a non-compiled scripting language in order to demonstrate its use for quickly prototyping model 

functionality without re-compiling the whole simulation. For this test, the Python script implements a simplistic 

calculation for the model’s rotation movement. To that end, a special Python toolbox was developed that was responsible 

for connecting to the SimBridge, monitoring the connection for incoming requests and parsing and constructing messages 

as required by the application. Finally, inside the script, a command line interface was also implemented in order to affect 

the rotation parameters externally at runtime. In Fig. 4 a sample of the XML messages that Python sends to SimBridge is 

given. In this XML message the Python application requests the modification of an SMP2 Field named “m_position” that 

belongs to the Position Model to the value of three.   

 

 

Fig. 4. XML message to set value in an SMP2 field 

 

Celestia is a freeware and cross-platform space SE that allows users to navigate through space and view characteristics 

of planets, stars, comets and more. A real-time 3D visualization system for space simulations is also discussed in [5]. 

Celestia allows the creation of add-ons in order to display additional objects such as spacecraft or newly discovered stars. 

It is packed with a Lua interpreter that allows the addition of logic and control in user created add-ons. 



Based on the latter, an add-on has been developed that displays a simple spacecraft orbiting earth. The add-on employs 

Lua’s capabilities to connect to the SimBridge infrastructure. When connected, it requests positional values from the 

appropriate SMP2 model and based on them it redraws the spacecraft accordingly. Fig. 5 depicts a small spacecraft in 

Celestia while orbiting earth along with the SIMSAT and a Python shell that control the spacecraft’s rotation. 

Through this use case, we firstly delegate an SMP2 model’s functionality to an external Python script, while rendering in 

3D the orbit and the axis rotation of the simulated spacecraft in Celestia. Since all communication is based to XML 

messages, implementation of such add-ons for EAs is user-friendly and easy to achieve as most, if not all, scripting and 

programming languages offer libraries to easily handle XML files. From user perspective, XML files are considered a 

common format to describe data structures and as a result their understanding and editing is considered trivial.  

 

 

Fig. 5. Spacecraft in Celestia simulation environment 

 

FUTURE STEPS 

Even though the SimBridge infrastructure offers a plethora of features that ease the bridging concept between SEs and 

EAs, several areas of improvements and advancements are under consideration. First of all, the need to make the 

infrastructure more generic has been identified. To that end, the creation of appropriate plugins to support more SEs is 

considered. Specifically, support for the SimTG and the EUROSIM environment is currently investigated. Furthermore, 

the addition of new communication protocols and EAs is being evaluated. More communication protocols shall provide 

easier ways to EAs to connect to the infrastructure while more EAs shall provide more flexibility to end users. 

Considerations for external tools are currently focused on reporting applications. Since SEs generally provide limited 

reporting facilities, it is made possible for the SimBridge to thrive in this context. By offering appropriate interfaces to 

support specialized visualization and reporting frameworks, it is made possible to end-users to have a more intuitive, user-

friendly manner of controlling and monitoring the simulation. Several external tools are currently being considered to 

have fully featured connectivity with the SimBridge concept. Firstly, Celestia can offer spacecraft visualization and 

control. Furthermore, Microsoft Excel, or similar spreadsheet applications, can offer spreadsheet analysis of values as 

well as the creation of appropriate graphs and mathematical facilities to investigate, correlate and interpret simulation 

results. Finally, live reporting and monitoring can also be made possible via web services and custom made web-

applications. Web infrastructure can also be used to control the simulation allowing users to both monitor and operate the 

SE.  

An issue that is also currently under investigation is the performance of the SimBridge infrastructure. It is considered that 

since the SimBridge acts as an extra layer between EAs and SEs it has an impact on the overall performance of the 

simulation. To that end, SimBridge shall be enhanced to provide a solid integration with the C-PDES engine [6,7]. 

Specifically, the C-PDES engine’s Communication Manager could be utilized to provide synchronized and optimized 

communication among instances of the simulation’s kernel such as SIMSAT’s Master/Site configuration. Furthermore, 

in order to achieve higher parallelization and performance the SimBridge plugin that refers to the SE should offer multiple 

SMP2 events that can then be exploited by the PDES engine. Lastly, advanced features of the PDES engine such as 



causality error detection and synchronization policies can be utilized by SimBridge to resolve internal timing constraints 

and timing issues. More specifically, since the PDES engine allows the creation of custom synchronization policies, it is 

considered to implement and integrate policies that are related to prioritization and lifespan of events in order to better 

support the underlying requirements of the SimBridge infrastructure.  

Finally, the SimBridge infrastructure could be used to interconnect multiple SEs. Using the bridging technology, it could 

be possible, for example, to use a SIMSAT based simulator while parts of it operate in a SimTG environment with 

Hardware in the Loop. This however, is a complex concept which, even though it is supported in theory, it is difficult to 

operate. First of all, there can be timing issues that can cause causality errors and severely damage the simulation’s 

correctness and fidelity. As previously discussed, however, solutions to avoid such condition already exist and can be 

utilized via the C-PDES engine.  

 

CONCLUSION 

 

The construction of a consolidated co-simulation where the simulators will coexist with external tools and applications is 

widely spread in the aerospace community. The SimBridge application attempts to address the challenges in this domain. 

Through this innovative bridging the simulation and the EA work together and the latter can obtain or modify simulation 

variables’ state, send commands and schedule events for execution, or even exploit all the simulation services. 

Furthermore, the simulation models have the same benefits by interfaced with SimBridge, as its services are bidirectional 

and can perform in a synchronous or asynchronous mode. Multiple external connections are supported at simulation run-

time and multithreading techniques are exploited to speed up the execution, raise requests’ throughput, and eliminate idle 

time. Due to SimBridge technology, a great variety of EAs such as MATLAB, Celestia, Network Simulator 2/3, Web 

Services, and Python applications collaborate with SIMSAT to easily create a co-simulation environment. Hence, 

simulation models’ rapid prototyping and validation are enhanced, the overall human interaction with the simulation is 

significantly upgraded and interdisciplinarity in the European space community is augmented. 
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