

Methodology for timing characterisation of a LEON3 Numerical Emulator

William ARROUY (1), Christophe DUVERNOIS (1)

(1)AIRBUS Defence & Space
31 Rue des cosmonautes
31402 Toulouse Cedex 4

william.arrouy@astrium.eads.net
christophe.duvernois@astrium.eads.net

ABSTRACT

Nowadays, simulation based on processor numerical emulation executing real on-board software is widely used in order
to prepare or validate spacecraft operations. On top of full functional processor instructions fidelity, current trend for
such satellite simulation is mainly focusing on improving the execution speed taking benefits of technology such as
multi-threaded or Just-In-Time execution. However, the major consequence is degrading the processor emulation timing
fidelity, thus considering for example instruction timing based on statistics, or partial simulation of processor
mechanisms; such as caches or instructions interactions. In the frame of on-board software validation on numerical
bench such kind of deal between execution speed and timing fidelity degradation may be acceptable. However, when
emulated software load is high, requires realistic timing fidelity for tasks sequencing or gets tight timing constraints, it
becomes mandatory considering as a key element improvement of emulation timing fidelity as well as execution speed.

Based on the AIRBUS D&S LEON3 processor numerical emulator SimLEON, a timing characterisation phase has been
led using a StarKit SCOC3 board. Execution results from same software suite execution on both the LEON3 hardware
board and numerical emulator are compared. When a discrepancy is found, SimLEON is updated accordingly with the
aim of improving its timing fidelity but also keeping in mind still having good execution speed in order not to impair its
usability.

The objective of this paper is first to present the methodology used to perform this task, then its achievement in terms of
SimLEON timing/execution speed performances and finally lessons learned for characterisation of next generation
processors.

INTRODUCTION

Embedded software is now generally developed, tested and validated by AIRBUS D&S using numerical simulators. For
obvious reasons, numerical simulators are relatively easy to deploy and low cost compare to hardware platform. It also
proposes advanced functions such as debugging services that does not exist on hardware. Among the numerical
simulator components, a key element is the processor emulator. On one hand, the current trend in processor emulator
development is to focus on optimising its execution speed using various techniques (Instruction Cycles based on
statistics, Just In Time, …) in order to be able to run simulations at several times real-time and consequently saving
software testing time. On the other hand, embedded software are now more and more performing tasks leading to high
Central Processing Unit (CPU) load and tight tasking constraints which should also been taken into account.
Consequently, timing fidelity of the numerical processor emulator is now becoming as important as execution speed.

Modern processors are complex thus using specific hardware mechanisms to improve overall performances with at the
end the purpose of increasing the number of instructions that can be executed by seconds. The usage of memory cache
mechanisms, instruction pipelining, or branch prediction are examples of such processor features that improve the
instructions throughput. Processor emulator must model those components and especially their effects on instruction
cycle count in order to reach a good timing fidelity compared to hardware. As a consequence, it is necessary to fully
understand the behaviour of these mechanisms. However, those functionalities are sometimes poorly documented and
reverse engineering is required. This paper is then presenting the methodology which has been used to improve the
timing fidelity of the AIRBUS D&S SimLEON LEON3 numerical emulator.

METHODOLOGY

This chapter describes in deep the methodology to characterise and reach good timing fidelity on processor numerical
emulation. It especially describes how to use reverse-engineering in order to understand undocumented and hidden
mechanisms of the processor including pipelines, caches and their sub-components as well as attached functions such as
a Floating Point Unit (FPU) or I/O peripherals; all in an iterative and efficient way. It can be easily transposed and
adapted to any processor family, either starting from scratch (e.g. with a simple model that counts one cycle per
instruction, no matter what) or ignoring the existing documentation (which is sometimes not accurate enough) to finally
build a model based on hardware observations.

The methodology was used (and refined) to characterize a SCOC3 numerical model developed by AIRBUS D&S which
embeds a LEON3 emulator (SPARC v8 architecture [1]), using a SCOC3 StarKit board [2] as hardware reference. The
debug facility on the hardware board is first ensured by the Debug Serial Unit (DSU) module which allows displaying
accurate dated instructions and memory bus accesses and secondly thanks to a high precision timer counter which
indeed gives; when read; the elapsed processor cycles. On the numerical side, a first version of SimLEON product is
available and fully functionally representative of a LEON3 processor. The cache, pipelines and instruction timing are
modelled based on the information available on the processor documentation [3] but with restrictions for some
mechanisms or instruction combinations thus degrading its timing fidelity compared to hardware board.

First of all, the method requires setting up a test environment. It is composed of a large set of tests programs /
benchmarks that covers a wide range and type of algorithms in order to reach a good set of the processor instructions
combinations that could happen with real application software (for example algorithms that mainly uses the cache but
often with some miss or others fully in the cache, …). It is better not to write such kind of programs but better to rely
on a large set of benchmarks available on the market (test suite like Stanford, Powerstone, etc…) and adapt them to the
target platform. Moreover, those benchmarks generally regroup a set of algorithms that can be easily split into several
sub-programs or functions with the benefit of reducing the scope of investigation of a timing deviation.

Then, for each algorithm in the benchmark set, a specific software is written in order to run the benchmark function
several times in a loop (let’s consider 10 times). The number of cycles spent by each benchmark function call is
measured and displayed. If such cycle counter feature is not available on the target platform, the most available precise
timer must be used instead. The iteration process covers for the first iteration loop, the loading of the software to the
instruction cache and for the following ones execution with only instructions cache hit. Indeed, to ease and simplify the
instructions trace processing, it should be taken in to account that benchmark code is small enough to fully fit in the
instruction cache. The reason for more than 2 iterations (one not in instruction cache, and one in) is to get an average
timing value due to non-constant execution time on the hardware (e.g. because of SDRAM refresh impact). The
benchmarks are first run on the hardware platform to get reference time and then on the emulator. A set of ten values is
now available representing the number of CPU cycles needed to execute the same software on both hardware and
numerical platforms. The error percentage is computed making the difference between the numbers of cycles spent on
the hardware and emulation using the following formulae:

 �����	% =	
(�	�
��
�������	��	�
���������
)

�	�
���������
	
∗ 100 (1)

Unless the emulator timing model is pessimistic (some instructions or memory access have extra cycles penalties), a
negative value is generally output for almost all test case. On top of that it is more interesting to have negative values
(emulator faster than hardware) than positive because it is generally easier to find missing cycles and update the
emulator impacted algorithm that the other way…

Before starting the tests execution analysis; care shall be put on processing them in order to separate each complex
component under characterisation. It is easier to first check a simple function than a complex one. As a result, in the
first steps, the floating point algorithms are kept aside in order to focus on the pure integer ones. Indeed, the Floating
Point Unit is a complex component that often comes with its own pipeline and that interacts with the Integer Unit (IU)
one.

Run all Benchmark

Tests

Fidelity is

OK ?

Select Benchmark

With Biggest

Difference

Analysis

Refine

To Reduce code

To analyse

Create New

Assembly Language

Test Case

Instructions Set

Identified ?

No

Stop

Fix And Run

OK ?
Save

Test Case

Run

Benchmark

Divergence

No

Yes

Tests Set
Run all tests and compare

result to hardware difference

Check timing fidelity error and stop when

errot is acceptable

Focus on the benchmark which shows the

biggest timing discrepancy wrt hardware

reference

New timing measures selecting more

specific code section focusing on the area

showing the biggest difference

Limited section of code with timing

discrepancy has been identified (fit in

hardware trace buffer)

Analyse traces instructions by instructions

to identify a divergent instruction or set

of instructions

Re-run the Benchmark test to check if a

divergence still exists and analyse to be

done again.

Write a new simple test(s) case using the

divergent instruction pattern which

reproduces the problem.

Fix implementation of the emulator and

run the small test case

If implementation is correct, save the test

case for non regression and continuous

integration.

Fig. 1. Emulator Fidelity Enhancement Flowchart

Refining this same concept, the main idea is then to first check the IU focussing on the pipeline behaviour, followed by
the data cache with the associated load/store mechanisms and finally with the instruction cache behaviour. More in
details, it could be considered in a first batch, benchmarks without load/store instructions; then only pipeline
mechanism(s) can affect the timing. From these it can easily be deduced the instructions and pipeline behaviour, that is
to say detecting and understanding pipeline locks, optimisations or extra cycles due to combination of instructions
(branches, jumps, …). In a second step, memory accesses (load/store) are introduced to check the timing model mainly
focusing on the data cache and write buffer. Finally, as a last step, the instruction cache is considered focussing on the
timings generated by the first iteration of the benchmarks (instruction cache misses). This is the best and theoretically
ideal way to do but in real-world it is not so straight forward since those components are not completely independent.

In practice, it is helpful to split tests by functions (at least to isolate FPU ones), but it then quickly becomes more
efficient to select the tests which are showing the most important deviation(s). If they are several, it is also more
efficient and obvious to first select the one with the simplest and shortest algorithm. Indeed, as a benchmark may
represent a huge amount of instructions executed by the CPU, it is necessary to reduce the scope of investigation. The
first operation to perform is to display the number of cycles spent by each benchmark internal functions (and/or loop or
code snippet) in addition to the benchmark time. The refining process must be continued (dichotomy method)
iteratively. That is to say for a function or code section showing cycles count difference, the same process is applied
measuring cycle counts of more and more limited code area until the amount of executed instructions showing a
difference becomes a few hundred. This phase may additionally requires modifying some benchmark algorithm(s); for
instance to reduce a loop iteration. The purpose of this “zoom” ; which leads to a reduced set of executed instructions; is
to cope with the fact that the amount of instruction and bus traces the hardware can output is generally small. It is then
important, to get relevant information on hardware trace which implies starting and stopping the instruction execution
tracing at the right location (i.e. close to where lies the timing discrepancy). Finally, the emulator and hardware outputs
are compared instructions by instructions. It should be mentioned that, to ease the identification of differences it is also
helpful to get the emulator generating the same trace format as the hardware, thus allowing processing by automatic
tools.

Now, the instruction or the set of executed instructions causing the timing difference has been identified. The next
phase is to extract the pattern, to copy it to a small assembly language (small = a few tenths of instructions) test case in
order to easily reproduce and investigate the timing issue (it should be pay attention that the assembly test case must be
executed two times to avoid effect of instruction cache miss). This assembly test case purpose is to understand the
timing issue root cause. As such, it can be modified, derived and extended to help finding the non-simulated mechanism
or discovering new ones. As soon as the problem is understood and the correction performed on the emulator, the
assembly test case is kept as reference (to be executed as non-regression). It should be paid attention to the fact that it is
very important to make a clever and understood implementation and not to naively adapt the emulator to match the test
result. Moreover, it is also important to keep in mind that fixing a timing issue only to get the test execution successful
without understanding the underlying phenomena may incorrectly improve or degrade the fidelity of other tests with the
consequence of making the convergence impossible. Additionally, a valid fix can also degrade the timing fidelity of
other tests showing that there is still some timing inaccuracy to fix. From this point, it is recommended to re-run all the
assembly test cases and benchmarks to check for non-regression after having updated the emulator implementation.

This process must be re-iterated on each benchmark up to getting all tests converging to high timing fidelity as
described by the method flow chart (Fig. 1.).

After having tuned and fixed the emulator for the IU block, same process is applied to the remaining the floating point
instructions. The focus shall be put on understanding how the FPU is interacting with the IU pipeline especially on
memory/registers accesses. This may be a difficult task because the FPU is generally seen as a black box with little
documentation on its internal behaviour. On top of that, an important number of cases shall be considered depending of
the existence of a parallel or serial FPU pipeline, instructions parallelism inside the FPU or parameter dependant
instructions execution cycle time. However, applying the same procedure as for the IU, that is to say, refining the cycle
count difference display up to identifying a reduced set of instructions; allows finding all the information about the FPU
pipeline, instructions and mechanisms.

APPLICATION

This method was applied to improve the fidelity of the SimLEON3 emulator especially focussing on the FPU [4] unit
but also on the IU. The fidelity improvement task duration was quick. Before this improvement phase, the emulator had
92% fidelity compared to hardware reference (i.e error% = +/- 8%) using as reference benchmark the Stanford test.

At the end, we achieve very good performance reaching more than 99.5% (error 0.5% - worst case i.e. greater deviation
compared to hardware results) fidelity for pure Integer Unit tests and more than 98.4% (error 1.6% - worst case) when
the FPU is used as shown by (Fig. 2). Here, the error % is displayed per benchmark showing; the first execution
(instruction cache loading) and for the 9 following executions (software fully in instruction cache) the worst (greater
deviation compared to hardware of the 10 runs) and average (mean value of the 10 executions). Detailed results are also
presented hereafter in (Tab. 1.)

Fig. 2. Timing Dispersion (error %) Overview per Benchmark

The 100% fidelity is not reached due to three main elements: first, timings are also not constants on hardware (for
example impacts of SDRAM refresh on load instructions); secondly, division and square root FPU instructions timing
are operands dependant, then an average value is used by the emulator timing model; and finally because has been
encountered very rare and complex phenomenon based on a large combination of instructions we do not model. For
these latter ones, it is deliberately chosen not to implement them because they are quite complex to model with
significant impacts on the performances (speed) and poor fidelity improvement (estimated to less than 0.02%).

The following table (tab. 1.) gives an extract of some used benchmark results showing the test name, the average error
(over 10 iterations), the worst error case (worst of the 10 iterations), the first iteration error (instruction cache miss), the
test total duration in seconds (time the benchmark execution lasts) and finally a test description summary. The two main

contributors to deviations are the SDRAM refresh impact on load instructions (up to 1% for the IU and FPU) and
floating point division / square root instructions which are modelled using an average number of cycles.

Tab. 1. Results of some benchmark tests comparison between SimLEON3 and StarKit board

Test Avg % Worst % First % Duration (s) Description
PUZZLE 0,00 -0,01 -0,01 4,241 Puzzle
BUBBLE -0,20 -0,22 -0,21 1,147 Bubble Sort

TREES -0,25 -0,26 -0,25 6,642
Tree Sort (Dynamic Allocation and Linked
List)

QUICK -0,04 -0,07 -0,10 0,937 Quick Sort
INTMM -0,01 -0,03 -0,03 0,908 Integer Matrix Multiplication
MM 0,00 -0,02 -0,14 1,029 Real Matrix Multiplication
QUEENS -0,15 -0,17 -0,09 0,942 9 Queens Problem
TOWERS -0,27 -0,30 -0,27 1,306 Hanoi Towers
PERM -0,17 -0,19 -0,19 1,015 Permutation (recursive)
OSCAR -0,95 -0,97 -0,95 1,208 FFT / Cosine
STANFORD -0,22 -0,96 -0,18 15,041 Stanford Benchmark

JPEG -0,47 -0,48 -0,42 1,76 JPEG 24-bit image decompression
AES -0,11 -0,12 -0,12 13,045 Advance Encryption Standard
DES -0,08 -0,08 -0,08 1,677 Data Encryption Standard
V42 -0,29 -0,29 -0,62 1,278 Modem Encoding/Decoding Compression
BCNT 0,00 0,00 0,00 2,063 Bit shifting & anding through 1K array
BLIT 0,00 0,00 0,00 8,576 Graphics Application
ENGINE -0,21 -0,21 -0,22 14,135 Engine Control Application
POCASG -0,05 -0,05 -0,06 1,669 POCASG paging communication protocols
CRC 0,00 0,00 0,00 6,791 Cyclic Redundancy Check
FIR3 -0,46 -0,46 -0,46 8,776 Integer FIR Filter
FIB -0,17 -0,17 -0,17 10,183 Fibonacci (recursive)
QURT 0,82 0,85 0,65 0,117 Square Root Calculation using Floating Point
G3FAX -0,67 -0,68 -0,68 0,595 Group 3 fax Decode
HEAP 0,00 0,00 0,00 17,899 Heap Sort

MATRIX -0,30 -0,30 -0,30 29,051 Integer Matrix Multiplication

LMS -1,05 -1,05 -1,05 16,268
LMS Filter Algorithm (data arrays set larger
than data cache can contain)

GAMMA 0,00 0,00 0,00 12,402 Gamma Function
WAVELT -0,11 -0,12 -0,33 0,173 Wavelet

WHETSTONE -0,33 -0,33 -0,33 5,722 Whetstone Benchmark

COS -0,75 -0,75 -1,26 0,118 Cosine (loop on some values)
SIN -0,22 -0,22 -0,61 0,115 Sinus (loop on some values)
ACOS -0,3 -0,31 -0,35 0,202 Arc cosine (loop on some values)
EXP -1,45 -1,45 -1,46 1,068 Exponential (loop on some values)
LOG -1,6 -1,6 -1,61 0,989 Logarithm (loop on some values)
POW -1,35 -1,36 -1,46 0,19 Power function (loop on some values)
SQRT -0,58 -0,58 -0,6 0,096 Square root (loop on some values)

The other important point is the emulation performance; that is to say how fast the emulation can be executed compared
to real-time. Despite of the fidelity improvement we also manage to slightly improve it compared to previous
SimLEON version. The execution of the Stanford Test; as a reference; on Intel® Xeon® X5860 at 3.33GHz emulating
a 32MHz LEON3 processor reaches a factor 11.5(i.e. tests execution duration is 11.5 times faster on SimLEON than on
hardware board). This figure is also confirmed by execution of AIRBUS D&S SeoSat Satellite Simulator (including all
equipments and physical models) in full operation mode; with full redundancy; emulating unmodified the SeoSAT
Central Software.

CONCLUSION

A full characterisation of processor timing mechanisms requires a lot of reverse-engineering and investigations at the
lowest level of the processor: instruction traces, spying the memory bus, cache inspection, generation of low level
assembly languages tests … This task can be quite long and complex but it is mandatory in order to get or increase
confidence on software validation based on numerical benches especially when CPU load or tight tasking constraints
are to be tested. It has also shown the importance of selecting a wide range of benchmarks for the tests set in order to
cover most of the hardware phenomenon. Despite, this process looks empirical it has been proved very efficient and re-
usable for any type of processors

The methodology presented in this paper has been successfully implemented to complete a LEON3 (including its FPU
and one I/O Bus) characterisation reaching high level of fidelity; -0.96% error – worst case on Stanford Reference
Benchmark; thus keeping good execution performances with a real-time execution factor of 11.5 on this Reference
Benchmark.

REFERENCES

[1] The SPARC Architecture Manual Version 8 – Revision SAV080SI9308

[2] AIRBUS Defence & Space - SCOC3 StarKit: http://www.space-airbusds.com/en/equipment/scoc3.html

[3] Aeroflex - UT699 LEON 3FT/SPARC V8 MicroProcessorTM Functional Manual

[4] Aeroflex Gailser - IEEE-STD-754 Floating Point Unit GRFPU/GRFPU-FT Companion Core Data Sheet

