Methodology for timing characterisation of a LEON3 Numerical Emulator
William ARROUY @, Christophe DUVERNOIS’

WAIRBUS Defence & Space
31 Rue des cosmonautes
31402 Toulouse Cedex 4
william.arrouy@astrium.eads.net
christophe.duver nois@astrium.eads.net

ABSTRACT

Nowadays, simulation based on processor numenialagion executing real on-board software is wideded in order
to prepare or validate spacecraft operations. @nofofull functional processor instructions fidglitcurrent trend for
such satellite simulation is mainly focusing on mmnng the execution speed taking benefits of tetdgy such as
multi-threaded or Just-In-Time execution. Howetke, major consequence is degrading the procesadatom timing
fidelity, thus considering for example instructidiming based on statistics, or partial simulatioh psocessor
mechanisms; such as caches or instructions intenactin the frame of on-board software validataom numerical
bench such kind of deal between execution speediamag fidelity degradation may be acceptable. ldger, when
emulated software load is high, requires realistiing fidelity for tasks sequencing or gets tiginiing constraints, it
becomes mandatory considering as a key elemenbimaprent of emulation timing fidelity as well as entton speed.

Based on the AIRBUS D&S LEONS3 processor numericalilator SImLEON, a timing characterisation phase theen
led using a StarKit SCOC3 board. Execution reduttsm same software suite execution on both the LE@Brdware
board and numerical emulator are compared. Wheagscaeghancy is found, SImMLEON is updated accordinghth the
aim of improving its timing fidelity but also keeqg in mind still having good execution speed inesrdot to impair its
usability.

The objective of this paper is first to presentitiethodology used to perform this task, then itieaement in terms of
SImLEON timing/execution speed performances andllfinlessons learned for characterisation of nextegation
processors.

INTRODUCTION

Embedded software is now generally developed,deste validated by AIRBUS D&S using numerical siatats. For
obvious reasons, numerical simulators are relatigaby to deploy and low cost compare to hardwkatfopm. It also

proposes advanced functions such as debuggingcsesrthat does not exist on hardware. Among the ricate
simulator components, a key element is the processaoilator. On one hand, the current trend in msaeemulator
development is to focus on optimising its executgpeed using various techniques (Instruction Cyblesed on
statistics, Just In Time, ...) in order to be aldeun simulations at several times real-time anagsequently saving
software testing time. On the other hand, embeddédvare are now more and more performing taskdingato high

Central Processing Unit (CPU) load and tight tagkiwonstraints which should also been taken intoowatc

Consequently, timing fidelity of the numerical pessor emulator is now becoming as important asutiecspeed.

Modern processors are complex thus using spediidware mechanisms to improve overall performamgts at the
end the purpose of increasing the number of instnug that can be executed by seconds. The usagembry cache
mechanisms, instruction pipelining, or branch prgdh are examples of such processor featuresitimatove the
instructions throughput. Processor emulator musiehthose components and especially their effestéstruction
cycle count in order to reach a good timing figeibbmpared to hardware. As a consequence, it isssacy to fully
understand the behaviour of these mechanisms. Hawthose functionalities are sometimes poorly duented and
reverse engineering is required. This paper is fhresenting the methodology which has been usethpoove the
timing fidelity of the AIRBUS D&S SimLEON LEON3 nuerical emulator.

METHODOLOGY

This chapter describes in deep the methodologhéwacterise and reach good timing fidelity on pssoe numerical
emulation. It especially describes how to use ma#engineering in order to understand undocumeaneldhidden

mechanisms of the processor including pipelineshes and their sub-components as well as attacimetidns such as
a Floating Point Unit (FPU) or I/O peripherals; @llan iterative and efficient way. It can be easiknsposed and
adapted to any processor family, either startimgnfrscratch (e.g. with a simple model that counts oycle per
instruction, no matter what) or ignoring the exigtdocumentation (which is sometimes not accunab@gh) to finally

build a model based on hardware observations.

The methodology was used (and refined) to charaeterSCOC3 numerical model developed by AIRBUS Dnétfich

embeds a LEON3 emulator (SPARC v8 architecture [I§lhg a SCOC3 StarKit board [2] as hardware esfes. The
debug facility on the hardware board is first erdluipy the Debug Serial Unit (DSU) module whicloat displaying
accurate dated instructions and memory bus accesgksecondly thanks to a high precision timer t@uwhich

indeed gives; when read; the elapsed processtescyOn the numerical side, a first version of SEHAIN product is
available and fully functionally representativeaof EON3 processor. The cache, pipelines and irt&tru¢ciming are
modelled based on the information available on phecessor documentation [3] but with restrictiolns $ome
mechanisms or instruction combinations thus degrai$ timing fidelity compared to hardware board.

First of all, the method requires setting up a ®stironment. It is composed of a large set ofstgsbgrams /
benchmarks that covers a wide range and type ofitligns in order to reach a good set of the prawesstructions

combinations that could happen with real applicasoftware (for example algorithms that mainly utescache but
often with some miss or others fully in the cacheé, It is better not to write such kind of progrmsubut better to rely
on a large set of benchmarks available on the mé#édst suite like Stanford, Powerstone, etc...) addpt them to the
target platform. Moreover, those benchmarks gelyeragroup a set of algorithms that can be eagilit ;ito several

sub-programs or functions with the benefit of redg¢he scope of investigation of a timing deviatio

Then, for each algorithm in the benchmark set, exifip software is written in order to run the bbnwark function
several times in a loop (let's consider 10 timé®)e number of cycles spent by each benchmark fumatall is
measured and displayed. If such cycle counter feasunot available on the target platform, the naogilable precise
timer must be used instead. The iteration processrs for the first iteration loop, the loadingtbé software to the
instruction cache and for the following ones ex&eutvith only instructions cache hit. Indeed, teeand simplify the
instructions trace processing, it should be taketoiaccount that benchmark code is small enoudhilly fit in the
instruction cache. The reason for more than 2titara (one not in instruction cache, and one irtpiget an average
timing value due to non-constant execution timetloe hardware (e.g. because of SDRAM refresh impadihe
benchmarks are first run on the hardware platfarmet reference time and then on the emulatoretAfkten values is
now available representing the number of CPU cyalesded to execute the same software on both hesdaved
numerical platforms. The error percentage is coegbumaking the difference between the numbers desygpent on
the hardware and emulation using the following folae:

cycles —cycles
(cy emulator —€Y hardware) %100 (1)

error % =
cycleSpardware

Unless the emulator timing model is pessimistiax(sanstructions or memory access have extra cymeslties), a
negative value is generally output for almost edittcase. On top of that it is more interestingdee negative values
(emulator faster than hardware) than positive beeatiis generally easier to find missing cyclesl aqpdate the
emulator impacted algorithm that the other way...

Before starting the tests execution analysis; sh@l be put on processing them in order to separath complex
component under characterisation. It is easieirsd ¢heck a simple function than a complex one.aA®sult, in the
first steps, the floating point algorithms are kapide in order to focus on the pure integer olmeieed, the Floating
Point Unit is a complex component that often comih its own pipeline and that interacts with tmeelger Unit (1U)

one.

Run all Benchmark

) S—

Tests

Fidelity is
oK ?

Select Benchmark
With Biggest
Difference

) 4

Refine
To Reduce code <
To analyse

nstructions Set
Identified ?

Tests Set

Stop

Run
Benchmark

Divergence

Create New
Assembly Language
Test Case

> Fix And Run

Yes—P

Save
Test Case

Run all tests and compare
result to hardware difference

Check timing fidelity error and stop when
errot is acceptable

Focus on the benchmark which shows the
biggest timing discrepancy wrt hardware
reference

New timing measures selecting more
specific code section focusing on the area
showing the biggest difference

Limited section of code with timing
discrepancy has been identified (fit in
hardware trace buffer)

Analyse traces instructions by instructions
to identify a divergent instruction or set
of instructions

Re-run the Benchmark test to check if a
divergence still exists and analyse to be
done again.

Write a new simple test(s) case using the
divergent instruction pattern which
reproduces the problem.

Fix implementation of the emulator and
run the small test case

If implementation is correct, save the test
case for non regression and continuous
integration.

Fig. 1. Emulator Fidelity Enhancement Flowchart

Refining this same concept, the main idea is thefirgt check the 1U focussing on the pipeline babar, followed by
the data cache with the associated load/store mexcha and finally with the instruction cache bebavi More in
details, it could be considered in a first batclendhmarks without load/store instructions; thenyopipeline
mechanism(s) can affect the timing. From thesaurit €asily be deduced the instructions and pip&@aviour, that is
to say detecting and understanding pipeline lockgimisations or extra cycles due to combinationinstructions
(branches, jumps, ...). In a second step, memorysaesgload/store) are introduced to check the gmindel mainly
focusing on the data cache and write buffer. Bjpals a last step, the instruction cache is corsitifocussing on the
timings generated by the first iteration of the dfenarks (instruction cache misses). This is thet Aad theoretically
ideal way to do but in real-world it is not so gtet forward since those components are not comlyl@dependent.

In practice, it is helpful to split tests by furmwts (at least to isolate FPU ones), but it thertlkdgibecomes more
efficient to select the tests which are showing mhast important deviation(s). If they are seveials also more
efficient and obvious to first select the one wille simplest and shortest algorithm. Indeed, agrachmark may
represent a huge amount of instructions executetthdof"PU, it is necessary to reduce the scopevektigation. The
first operation to perform is to display the numbécycles spent by each benchmark internal funsti@nd/or loop or
code snippet) in addition to the benchmark timee Thfining process must be continued (dichotomy houbt
iteratively. That is to say for a function or cosection showing cycles count difference, the saroegss is applied
measuring cycle counts of more and more limitedecadea until the amount of executed instructionrswiihg a
difference becomes a few hundred. This phase maii@uhlly requires modifying some benchmark algori(s); for
instance to reduce a loop iteration. The purpoghisf'zoom” ; which leads to a reduced set of exed instructions; is
to cope with the fact that the amount of instruttamd bus traces the hardware can output is génenradll. It is then
important, to get relevant information on hardwaeee which implies starting and stopping the ungion execution
tracing at the right location (i.e. close to whies the timing discrepancy). Finally, the emulaaod hardware outputs
are compared instructions by instructions. It stida¢ mentioned that, to ease the identificatiodifférences it is also
helpful to get the emulator generating the sameetfarmat as the hardware, thus allowing procesbkingutomatic
tools.

Now, the instruction or the set of executed indtams causing the timing difference has been idiedti The next
phase is to extract the pattern, to copy it to alkassembly language (small = a few tenths dfuicsions) test case in
order to easily reproduce and investigate the ginmsue (it should be pay attention that the asgetabt case must be
executed two times to avoid effect of instructiacte miss). This assembly test case purpose isderstand the
timing issue root cause. As such, it can be matlifieerived and extended to help finding the nonuabed mechanism
or discovering new ones. As soon as the probleomderstood and the correction performed on the &owlthe
assembly test case is kept as reference (to beitexkas non-regression). It should be paid atterttidhe fact that it is
very important to make a clever and understoodémintation and not to naively adapt the emulatonatch the test
result. Moreover, it is also important to keep imdnthat fixing a timing issue only to get the tegecution successful
without understanding the underlying phenomena megyrrectly improve or degrade the fidelity of athests with the
consequence of making the convergence impossildditidnally, a valid fix can also degrade the tignifidelity of
other tests showing that there is still some timiragcuracy to fix. From this point, it is recommaed to re-run all the
assembly test cases and benchmarks to check feregoession after having updated the emulator imptgation.

This process must be re-iterated on each benchmyarto getting all tests converging to high timirigefity as
described by the method flow chart (Fig. 1.).

After having tuned and fixed the emulator for thellock, same process is applied to the remairtiegflpating point
instructions. The focus shall be put on understapdiiow the FPU is interacting with the 1U pipeliaspecially on
memory/registers accesses. This may be a difftask because the FPU is generally seen as a btackvith little
documentation on its internal behaviour. On tophat, an important number of cases shall be coreidgepending of
the existence of a parallel or serial FPU pipelimstructions parallelism inside the FPU or paranetependant
instructions execution cycle time. However, appdythe same procedure as for the U, that is torediying the cycle
count difference display up to identifying a reddicet of instructions; allows finding all the infoation about the FPU
pipeline, instructions and mechanisms.

APPLICATION

This method was applied to improve the fidelitytié SImMLEON3 emulator especially focussing on tR&JH4] unit
but also on the IU. The fidelity improvement taskation was quick. Before this improvement phalse @mulator had
92% fidelity compared to hardware reference (ireré6 = +/- 8%) using as reference benchmark thefStd test.

At the end, we achieve very good performance reacitiore than 99.5% (error 0.5% - worst case ieatgr deviation
compared to hardware results) fidelity for puresggr Unit tests and more than 98.4% (error 1.6%rsicase) when
the FPU is used as shown by (Fig. 2). Here, ther &t is displayed per benchmark showing; the frstécution

(instruction cache loading) and for the 9 followiagecutions (software fully in instruction cachkg tworst (greater
deviation compared to hardware of the 10 runs)aveilage (mean value of the 10 executions). Detadledlts are also
presented hereafter in (Tab. 1.)

PUZZLE
WHETSTONE 13 BUBBLE
" ® Mean
WAVELT TREES
GAMMA 1 QUICK ® Worst
LMS INTMM First
08
MATRIX - MM
HEAP 6 QUEENS
v @O
G3FAX o . TOWERS
QURT ‘ o é ‘ PERM
FIB | OSCAR
FIR3 [STANFORD
CRC [JPEG
POCASG AES
ENGINE DES
BLIT va2
BCNT

Fig. 2. Timing Dispersion (error %) Overview perrdamark

The 100% fidelity is not reached due to three melaments: first, timings are also not constantshardware (for
example impacts of SDRAM refresh on load instruttjp secondly, division and square root FPU ingimas timing

are operands dependant, then an average valuedshysthe emulator timing model; and finally be@tss been
encountered very rare and complex phenomenon k@asedlarge combination of instructions we do notdeioFor

these latter ones, it is deliberately chosen nointplement them because they are quite complex ademwith

significant impacts on the performances (speed)pad fidelity improvement (estimated to less t8a02%).

The following table (tab. 1.) gives an extract ofre used benchmark results showing the test ndmme\vierage error
(over 10 iterations), the worst error case (wofghe 10 iterations), the first iteration errorgiruction cache miss), the
test total duration in seconds (time the benchreadcution lasts) and finally a test description swary. The two main

contributors to deviations are the SDRAM refresipaet on load instructions (up to 1% for the IU df@U) and
floating point division / square root instructionkich are modelled using an average number of sycle

Tab. 1. Results of some benchmark tests compabistveen SimLEON3 and StarKit board

Test Avg % | Worst % First % Duration (s) Description
PUZZLE 0,00 -0,01 -0,01 4,241 Puzzle
BUBBLE -0,20 -0,22 -0,21 1,147 Bubble Sort

Tree Sort (Dynamic Allocation and Linked
TREES -0,25 -0,26 -0,25 6,642 | List)
QUICK -0,04 -0,07 -0,10 0,937 Quick Sort
INTMM -0,01 -0,03 -0,03 0,908 Integer Matrix Mulligation
MM 0,00 -0,02 -0,14 1,029 Real Matrix Multiplication
QUEENS -0,15 -0,17 -0,09 0,942 9 Queens Problem
TOWERS -0,27 -0,30 -0,27 1,306 Hanoi Towers
PERM -0,17 -0,19 -0,19 1,015 Permutation (recujsive
OSCAR -0,95 -0,97 -0,95 1,208 FFT / Cosine
STANFORD -0,22 -0,96 -0,18 15,041 Stanford Benchmark
JPEG -0,47 -0,48 -0,42 1,76 JPEG 24-bit image dpoession
AES -0,11 -0,12 -0,12 13,045 Advance Encryptiom8éad
DES -0,08 -0,08 -0,08 1,677 Data Encryption Stashdar
V42 -0,29 -0,29 -0,62 1,278 Modem Encoding/Decodiognpression
BCNT 0,00 0,00 0,00 2,063 Bit shifting & anding throutK array
BLIT 0,00 0,00 0,00 8,576 Graphics Application
ENGINE -0,21 -0,21 -0,22 14,135 Engine Control Apalion
POCASG -0,05 -0,05 -0,06 1,669 POCASG paging commatinit protocols
CRC 0,00 0,00 0,00 6,791 Cyclic Redundancy Check
FIR3 -0,46 -0,46 -0,46 8,776 Integer FIR Filter
FIB -0,17 -0,17 -0,17 10,183 Fibonacci (recursive)
QURT 0,82 0,85 0,65 0,117 Square Root CalculationguSioating Point
G3FAX -0,67 -0,68 -0,68 0,595 Group 3 fax Decode
HEAP 0,00 0,00 0,00 17,899 Heap Sort
MATRIX -0,30 -0,30 -0,30 29,051 Integer Matrix Muglication
LMS Filter Algorithm (data arrays set larger

LMS -1,05 -1,05 -1,05 16,268 |than data cache can contain)
GAMMA 0,00 0,00 0,00 12,402 Gamma Function
WAVELT -0,11 -0,12 -0,33 0,173 Wavelet
WHETSTONE| -0,33 -0,33 -0,33 5,722 Whetstone Benchmark
COS -0,75 -0,75 -1,26 0,118 Cosine (loop on somagegl
SIN -0,22 -0,22 -0,61 0,115 Sinus (loop on sonmees)
ACOS -0,3 -0,31 -0,35 0,202 Arc cosine (loop on saaues)
EXP -1,45 -1,45 -1,46 1,068 Exponential (loop oms values)
LOG -1,6 -1,6 -1,61 0,989 Logarithm (loop on sorakies)
POW -1,35 -1,36 -1,46 0,19 Power function (loopsome values)
SQRT -0,58 -0,58 -0,6 0,096 Square root (loop aneswvalues)

The other important point is the emulation perfonog that is to say how fast the emulation candeewed compared
to real-time. Despite of the fidelity improvemenke valso manage to slightly improve it compared tevimus
SImLEON version. The execution of the Stanford Tasta reference; on Intel® Xeon® X5860 at 3.33@Hulating
a 32MHz LEONS processor reaches a factor 11.5@sts execution duration is 11.5 times faster onL&EON than on
hardware board). This figure is also confirmed kgation of AIRBUS D&S SeoSat Satellite Simulatimc({uding all
equipments and physical models) in full operatioods with full redundancy; emulating unmodified t8eoSAT
Central Software.

CONCLUSION

A full characterisation of processor timing meclsamé requires a lot of reverse-engineering and tigatons at the
lowest level of the processor: instruction tracgsying the memory bus, cache inspection, generatfoow level

assembly languages tests ... This task can be aquitgdnd complex but it is mandatory in order to @eincrease
confidence on software validation based on numkkieaches especially when CPU load or tight taskiogstraints
are to be tested. It has also shown the importaheelecting a wide range of benchmarks for thestest in order to
cover most of the hardware phenomenon. Despite ptlnicess looks empirical it has been proved viigient and re-
usable for any type of processors

The methodology presented in this paper has besgessfully implemented to complete a LEON3 (inahgdlits FPU
and one I/O Bus) characterisation reaching higlell®f fidelity; -0.96% error — worst case on StadfdReference

Benchmark; thus keeping good execution performamd#s a real-time execution factor of 11.5 on tReference
Benchmark.

REFERENCES

[1] The SPARC Architecture Manual Version 8 — RenisSAV080S19308
[2] AIRBUS Defence & Space - SCOC3 StarKit: httyww.space-airbusds.com/en/equipment/scoc3.html
[3] Aeroflex - UT699 LEON 3FT/SPARC V8 MicroProcess” Functional Manual

[4] Aeroflex Gailser - IEEE-STD-754 Floating Poldhit GRFPU/GRFPU-FT Companion Core Data Sheet

