
AN ECSS-E-70-32 COMPLIANT ENVIRONMENT WITH
EVOLUTION CONSIDERATIONS

Francesco Croce
EUMETSAT
francesco.croce@eumetsat.int

2

Agenda

• Background Information

• ECSS-E-70-31 Role and Adoption

• ECSS-E-70-32 Current Version Assessment

 Language and Engine Extensions
 Language Extensions Examples

• Overview of Adopted Technologies

• Conclusions

3

Missions Under EUMETSAT
Flight Operations Responsibility

EPS

Polar

Sentinel-3 EPS-SG

Geostationary

MTP MSG MTG

Under Definition
or Development

Under Definition
or Development

- MSG-1
- MSG-2
- MSG-3
- MSG-4 (Q1-2015)

- MTP-1

- METOP-A
- METOP-B
- METOP-C (2017)

- Sentinel-3A
- Sentinel-3B

- MTG-I1 - MTG-S1
- MTG-I2 - MTG-S2
-MTG-I3
-MTG-I4

- EPS-SG 1A / 1B
- EPS-SG 2A / 2B
- EPS-SG 3A / 3B

4

Mission Control System
Applications/Tools Functional Domain

Planning And
FD Services

M&C
Automation

Services

TM/TC Archive
Services
(Core)

EXT I/F
Services

CORE
M&C

On-Line

Supporting Off-Line

Simulation

Each of These Follows a Periodic Deliveries/Patch
Production and Acceptance Process

Addressing Corrective and Evolutive Maintenance

5

M&C Applications
Verification Infrastructure Initiative

The M&C Applications Maintenance and Engineering Team is defining and
implementing a generic MCS applications testing and verification infrastructure

High level goals:
• To streamline and harmonize the verification process through a common

infrastructure and test artefacts model

• Testing automation in terms of:

o execution with test pass/fail assessment and closed loop reference with
the formal System Under Test (SUT) requirements (e.g. SRD, SRS)

o Documentation production (e.g. Test Results)

Automation is fundamental in support to a fast and yet formal regressions testing
within a verification process of a new SUT patch/delivery

6

MCS Applications Delivery/Patches
Production, Verification and Roll-Out Process

Verification Infrastructure Applicability
- Verification Test Plan Definition
- Functional and I/F testing
- Non-regression testing

7

Infrastructure
Fundamental Required Features and Capabilities

• Formal data-model definition and handling
 Covering simple and complex data types with possibility of extensions to

custom types (user defined)

• SUT I/F and Supporting tools Customization
 Need to support different: SUT interfaces (technologies, mechanisms,

ICDs): interfaces to emulator/simulators, interfaces to external tools
used for test definition and requirements management (i.e. DOORS)

• Adoption of Formal Components Based Technology
 allowing extensions though components-based approach ruled by

formal specifications

Flexible Ext I/F
Customization

Extensible
Data-Model

Components
Based

Technology

8

Core Components and Standards Adoption

Space System Model
as common semantic and runtime

technology

ECSS E-ST-70-31C inspired

Test procedure language
definition and execution

ECSS-E-ST-70-32C
With Extensions

Formal Data Model

9

Space System Model
Role and Adoption

10

Space System Model Concepts

The SSM captures the Space System information and knowledge in terms of functional and/or
physical hierarchy of System Elements (SE)

A SSM defines each SE knowledge in terms of :
• Activities (Act)
• Reporting Data (Rdt)
• Events (Evt)

A functional/physical entity may be
modeled by a domain-specific view
(or sub-views)
Each view/sub-view modeling:
• the particular domain of interest of

the entity
• specific functional application and/or

behavior associated to the entity.

domain
view

domain
view

11

SSM as Common Semantic

The concepts of SE hierarchy, Act, Rdt, Evt and domain-specifc views are
considered a generic semantic that can be used to model elements of a
specific SSM applicability domain

The adoption of common semantic as allows to rely on an abstract layer
above low-level technologies, decoupling technologies from meaning

12

SSM Common Semantic In the Test Context

Test
Case

Test
Case

I/F 1
Services

• Test Plan (as SE), Test Cases (as SE), Test Procedures (as Act)
• SUT interfaces, services and data (hierarchy of SE and associated Act, Rdt, Evt)
• Test infrastructure functionality like activity executor, ….
• Test Tools, Emulators

I/F 2
Services

Test
Context

Test
Plan

Test
Infrastructure

SUT
Model & I/F

Test Tools /
Simulators

SE

SE

SE

SE

SE
SE

SE SE

SE

SE

SE

SE

13

E-70-32
Adoption and Assessment

14

ECSS-E-70-32C

ECSS-ST-70-32C identifies the requirements to be satisfied by any
language used for the development of automated test and flight operations
procedures

The testing infrastructure adopts all current standard specifications

The standard addresses:

• Procedure structure and dynamic
behavior specifications

• Procedure Language semantic
specifications

• Syntax of the PLUTO reference
language implementing the
specifications

15

E-70-32 Limitations – 1
Testing Environment vs. Flight Operations
Flight Operations Procedures tend to be simple and dedicated to achieve
mission operation goals, somehow delegating the low-level handling of the
Space System complexity to external entities (hence to the SSM in E-70-32)

Testing environments interact with the Space System typically with a higher
level of complexity than FOPs

In testing the delegation to the SSM is considered not enough for testing, and
the standard misses a level of formalization for:

• complex data types definition, handling and manipulation

• Availability of flexible semantic constructs/features required to express
complex pre-conditions, testing goals, behavior, conditions handling
(including exception handling) and confirmation criteria

16

E-70-32 Limitations – 2
Handling, Interaction and Management of SSM References

The standard does not address properly all SSM interactions and
SSM managements needs such as:

• Declaration and handling of SSM-Object data types (SE, Act, Rdt,
Evt) and SSM-Object References

• SSM structure traversing as well as SSM Objects properties
searching and query

• Dynamic SSM (Dynamic SSM) management with SSM-Objects
creation, deletion, etc..

• Access-rights, locking, synchronization

17

E-70-32
Language and Engine

Extensions

18

Data Model Definition
Simple Type, Complex Types, Properties

Root Types

19

SE, Rdt, Act, Evt are part of the data model as
derived types of SSMObject

SSMObject derived from Complex Data Type

Data Model Definition
SSM Objects as Complex Data Type

20

Language Extensions Overview - 1

Support to Formal data model definition
• simple and complex data types including SSMObjects (SE, Act, Rdt, Evt)
• extensions capabilities mechanism for custom-types (user defined)

SSM references and management
• possibility to define variables and constants of type SSM objects

(SystemElement, Activty, ReportingData, Event) and SSM Object
references

• SSM structure and SSMObjects traversing, search and query capabilities
as part of standard methods associated to SSMObjects Data Types

21

Language Extensions Overview - 2

Behavioral Enhancements
• actions handling (generalization of exception handling)
• Enhanced pre-conditions and confirmation rules capabilities
• Annotations as a way to extend capabilities of the language with

additional features not directly included in the language
grammar/model

Other Enhancements
• procedure returned arguments
• Enhanced built-in functions
• Capability to define user custom functions

22

Language Definition

In terms of language definition the language grammar supports:

• a EBNF syntax expressed as PLUTO-like

• XML schema directly derived from the syntax

The syntax is designed as a balance between:

• the original PLUTO natural language approach

• The need to support the new features with an optimized approach
(i.e. avoiding unnecessary “verbose” constructs)

23

E-70-32
Language Extension Examples

24

Object References

Procedure
 testPlan: reference(SystemElement);
 testCaseList: reference(SystemElement)[];

 step ExecuteTestPlan
 TestPlan = ssm.find ("MainTestPlan",
 SE_TYPE_TESTPLAN,
 SSMOBJ_CLASS_SYEL);

 testCaseList = TestPlan.getChildren (SE_TYPE_TESTCASE,

 SSMOBJ_CLASS_SYEL,
 LEVEL_ALL);

 end step ExecuteTestPlan
end procedure

testCaseList as variable of type
Array of SystemElement Reference

testPlan variable of type
SystemElement Reference

Find in the ssm objects reference
pointing to a SE of type TESTPLAN
with name “MainTestPlan”

Get all children SEs of type
TESTCASE contained by TestPlan

ssm is a global object reference
pointing to the SSM root

25

Actions: Generalization of Exception-Handling

Procedure
 testPlan: reference(SystemElement);
 testCaseList: reference(SystemElement)[];

 step ExecuteTestPlan
 actions {
 TestPlan_SE = ssm.find ("MainTestPlan", SE_TYPE_TESTPLAN,
 SSMOBJ_CLASS_SYEL);
 } handle ObjectReferenceNotFound {
 print("Test Plan Not Found");
 terminate();
 }
 ….
 end step ExecuteTestPlan
end procedure

Actions Block with handlers for each
condition

26

Initiate and Confirm with Actions

…
 testProcedureList: reference(SystemElement) [];
 testProcedureList = TestCase.getChildren (….);
 …

for (tprocIdx=0; tprocIdx < totalTestProcedures; tprocIdx++) {

 initiate and confirm testProcedureList[tprocIdx]
 handle Confirmed {

 print(testProcedureList[procIdx].name + "confirmed.");
 totalConfirmedTestProcedures++;

 } handle NotConfirmed {
 totalNotConfirmedTestProcedures++;
 print(testProcedureList[procIdx].name + " not confirmed.");
 print("Reason:“ + testProcedureList[procIdx].messages);

 }
….

Actions Block for
initiate and confirm

27

…
 confirmation

 if (totalConfirmedTestProcedures == totalTestProcedures) {
 print ("Test Plan Successfully Executed");

 } else {
 print ("Test Plan With Failed Procedures (" +
 totalNotConfirmedTestProcedures + " failed out of " +
 totalTestProcedures);
 }

 end confirmation
…

Initiate and Confirm with Actions

Confirmation Body with multiple complex rules with if-then-else brances
possibility to include statements on each conditional branch
The same capability is available for pre-conditions

28

Brief Overview of
Adopted Technologies

29

Technologies

RT-SSM framework and RT-SSM Components (e.g. SUT I/F, test plan DB
definition, etc..)
• java
• OSGi (Eclipse Equinox) And Spring (springsource)
• components as formal OSGi Bundles

OSGi has been selected due to a number of essential benefits but mainly is in line
with the fundamental requirement to implement functionality (and add-on)
according to formal component design specifications instead of design guidelines

Language, modeling and supporting artifacts (parser, editor)
• Eclipse Xtext and EMF

Messaging and Integration
• ApacheMQ
• Apache Camel

30

Conclusions

31

Conclusions - 1

• The verification infrastructure has retained all fundamental E-70-32

specifications and the adoption of the E-70-31 SSM Concepts

• The formalization of SSM as semantic model provides a formal and
generic paradigm to model all elements and entities in test domain

• The E-70-32 specifications and the identified extensions are believed

to provide a of test language constructs and features in support to a
wide range of automatic verification test scenarios and complexity

32

Conclusions - 2

• The E-70-32 extensions may contribute to the definition of a future revised version of the
standard. Such E-70-32 update activity could take into account:

• Lessons learned from E-70-32 applicability within existing systems as well as level of
tailoring defined within specific domains (e.g. the described verification infrastructure)

• Language features can be defined as grammar syntax and as XML schema, with XML used
for procedures interoperability

• The language features may be used as reference specifications on top of which higher
Domain Specific Languages (DSL) can be defined

DSLs built on-top of the E-70-32 can be used to define a language environment in support
to a specific problem domain within the space system, but at the same time….

…maintaining compatibility and strong interoperability with the E-70-32 formal
specifications (grammar and XML schema)

Present technologies and tools are mature to support DSL definitions

33

Thank You

	Slide Number 1
	Agenda
	Missions Under EUMETSAT �Flight Operations Responsibility
	Mission Control System�Applications/Tools Functional Domain
	M&C Applications �Verification Infrastructure Initiative
	MCS Applications Delivery/Patches�Production, Verification and Roll-Out Process
	Infrastructure �Fundamental Required Features and Capabilities
	Core Components and Standards Adoption
	Slide Number 9
	Space System Model Concepts
	SSM as Common Semantic
	SSM Common Semantic In the Test Context
	Slide Number 13
	ECSS-E-70-32C
	E-70-32 Limitations – 1�Testing Environment vs. Flight Operations
	E-70-32 Limitations – 2�Handling, Interaction and Management of SSM References
	Slide Number 17
	Data Model Definition�Simple Type, Complex Types, Properties
	Data Model Definition�SSM Objects as Complex Data Type
	Language Extensions Overview - 1
	Language Extensions Overview - 2
	Language Definition
	Slide Number 23
	Object References
	Actions: Generalization of Exception-Handling
	Initiate and Confirm with Actions
	Initiate and Confirm with Actions
	Slide Number 28
	Technologies
	Slide Number 30
	Conclusions - 1
	Conclusions - 2
	Slide Number 33

