e ek

AN ECSS-E-70-32 COMPLIANT ENVIRONMENT WITH
EVOLUTION CONSIDERATIONS

Francesco Croce
EUMETSAT
francesco.croce@eumetsat.int

& EUMETSAT

Background Information

ECSS-E-70-31 Role and Adoption

ECSS-E-70-32 Current Version Assessment
Language and Engine Extensions
Language Extensions Examples

Overview of Adopted Technologies

Conclusions

& EUMETSAT ,

Under Definition
or Development

Geostationary
- MTP-1 - MSG-1 - MTG-I1 - MTG-S1
- MSG-2 - MTG-I2 - MTG-S2
- MSG-3 -MTG-I3
- MSG-4 (Q1-2015) -MTG-14
Under Definition Sentinel'3
or Development
Polar

- METOP-A - Sentinel-3A - EPS-SG 1A/1B

- METOP-B - Sentinel-3B -EPS-SG 2A /2B
- METOP-C (2017) - EPS-SG 3A/3B

& EUMETSAT ,

S/Tools Fu()nal Domain

Off-Line Supporting
Proc. Prep. TM/TC DB Products Analysis &
Tools Tools QA Reporting
Configuration
- Control
\
Planning And Mission Flight " File Transfer |
FD Services Planning Dynamics Services

Each of These Follows a Periodic Deliveries/Patch
Production and Acceptance Process
Addressing Corrective and Evolutive Maintenance

TVTTC AICnive [Dieplays] | services] 1 TGOl |
Services
(Core) TM Proces. TC Proces. Data Archive On-Board
Chain Chain & Retrieval SW Manag. S/C
Simulator
EXT I/F
Services [BaseBand I/F J [Facilities I/F]

& EUMETSAT ,

I\/l&‘?C Appllcx@tloﬁ‘-

: Inltlatlve

The M&C Applications Maintenance and Engineering Team is defining and
iImplementing a generic MCS applications testing and verification infrastructure

High level goals:
* To streamline and harmonize the verification process through a common
infrastructure and test artefacts model

e Testing automation in terms of:
0 execution with test pass/fail assessment and closed loop reference with
the formal System Under Test (SUT) requirements (e.g. SRD, SRS)
o Documentation production (e.g. Test Results)

Automation is fundamental in support to a fast and yet formal regressions testing
within a verification process of a new SUT patch/delivery

& EUMETSAT .

MCS Appllcgtlons-WPatches

on, Verification and RoII Out Process

~— 3 Verification Infrastructure Applicability
s (= - Verification Test Plan Definition
g e - Functional and I/F testing
— . - Non-regression testing

Faled

CCD. S4G =nd 50
§

& EUMETSAT .

tal Rec uire eatures and«Capabilities

Extensible
Data-Model

Flexible Ext I/F

Customization

Components
Based

~ Technology

 Formal data-model definition and handling

Covering simple and complex data types with possibility of extensions to
custom types (user defined)

o SUT I/F and Supporting tools Customization

Need to support different: SUT interfaces (technologies, mechanisms,
ICDs): interfaces to emulator/simulators, interfaces to external tools
used for test definition and requirements management (i.e. DOORS)

 Adoption of Formal Components Based Technology

allowing extensions though components-based approach ruled by
formal specifications

& EUMETSAT

[N 4

Space System Model Test_ pr_ocedure Ianguz_age
as common semantic and runtime definition and execution
technology ECSS-E-ST-70-32C
\ECSS E-ST-70-31C inSpiredj = With Extensions §

Formal Data Model

& EUMETSAT ,

Space System Mode|
Role and Adoption

& EUMETSAT .

Space Sys‘t’@mpts

The SSM captures the Space System mformatlon and knowledge in terms of functional and/or
physical hierarchy of System Elements (SE)

A SSM defines each SE knowledge in terms of :

System Element (SE)

« Activities (Act)
* Reporting Data (Rdt)
 Events (Evt)

A functional/physical entity may be
modeled by a domain-specific view
(or sub-views)

Each view/sub-view modeling:

* the particular domain of interest of

domain .
JNall - the entity

view
» specific functional application and/or

view behavior associated to the entity.

Wit /4 Ty domain
Sy | —

& EUMETSAT

| SSM as Cor@lmom

The concepts of SE hierarchy, Act, Rdt, Evt and domain-specifc views are
considered a generic semantic that can be used to model elements of a
specific SSM applicability domain

The adoption of common semantic as allows to rely on an abstract layer
above low-level technologies, decoupling technologies from meaning

& EUMETSAT

M M Com i:w f he Test Context
« Test Plan (as SE) Test Cases (as SE), Test Procedures (as Act)
o SUT interfaces, services and data (hierarchy of SE and associated Act, Rdt, Evt)
o Test infrastructure functionality like activity executor,

e Test Tools, Emulators

s

W1 yF2

Servnces Semﬂcg Test Tools / |
. Simulators

K§==)\"==="

- SUT
Model & I/F |

Test
Context

& EUMETSAT _,

E-70-32

Adoption and Assessment

& EUMETSAT

ECSS i 70LB S —

ECSS ST—?O 32C identifies the requirements to be satisfied by any
language used for the development of automated test and fllght operatlons
procedures T

The standard addresses:

Dlt Bcly

e Procedure structure and dynamic
behavior specifications

| Watchdog Body

Watchdog | | Watchdog
| Step Step

 Procedure Language semantic
specifications

» Syntax of the PLUTO reference |
language Implementing the
specifications | Confimation Body

The testing infrastructure adopts all current standard speC|f|cat|ons

& EUMETSAT _,

== 70%*32 leﬁm

ght Operations

Fllght Operatlons Procedures tend to be simple and dedicated to achieve
mission operation goals, somehow delegating the low-level handling of the
Space System complexity to external entities (hence to the SSM in E-70-32)

Testing environments interact with the Space System typically with a higher
level of complexity than FOPs

In testing the delegation to the SSM is considered not enough for testing, and
the standard misses a level of formalization for:

« complex data types definition, handling and manipulation

« Avallability of flexible semantic constructs/features required to express
complex pre-conditions, testing goals, behavior, conditions handling
(including exception handling) and confirmation criteria

& EUMETSAT .

E-70-32 Limita |on§m_
andlln Inte_actlon an agement 0f.SSM References

The standard does not address properly all SSM interactions and
SSM managements needs such as:

* Declaration and handling of SSM-Object data types (SE, Act, Rdt,
Evt) and SSM-Object References

« SSM structure traversing as well as SSM Objects properties
searching and query

e Dynamic SSM (Dynamic SSM) management with SSM-Objects
creation, deletion, etc..

« Access-rights, locking, synchronization

& EUMETSAT ,,

E-70-32

Language and Engine
Extensions

& EUMETSAT

= signed : EBoolean

= hitLength
= base

H ssMObject

i
: ' : H Dataty
| | PEe
' Root Types | i = name H Property
: N —— p 0.1 -
R i o pPTC type name
: = PFC o
1 Rl
i properties
i
i
E Enum !
1
: H simpleType H ComplexType
1
H Boolean /‘i’/m
H Arra
H string H NumericType| |H AbsoluteTime - Elementig,fpe
= units = length
= format —
H RelativeTime
H IntegerType E{,
S H FloatType

= name : EString

& EUMETSAT _,

Data Model Detfinition

Complex Data Type

H ComplexType

SE, Rdt, Act, Evt are part of the data model as

derived types of SSMObject b
E ssmobject 0"
. . = name : EString children
SSMObject derived from Complex Data Type \
H Argument H activity H ReportingData I H Event H systemElement]
= name : EStringg)| + = executionStatus = value = |astRaiseTime
= value arégumentsl- = confirmationStatus = validity
= representation = jnitiationTime = samplingTime
= startTime = monitoringStatus
= terminationTime = statusConsistencyCheck
J Argumen@H = completionTime = |imitCheck
firectives O restartNumber O deltaCheck H oolEvent H SystemEvent
= expectedCheck

H TcCesdsPacket] f \

H schedule H TmParameter| |H TmCecsdsSourcePacket]

H procedure ‘%

H PusServiceRequest] H TcSequence

=] PusServiceResponse

& EUMETSAT

_ Language ﬁxMrwew .2

Support to Formal data model definition
* simple and complex data types including SSMODbjects (SE, Act, Rdt, Evt)
o extensions capabilities mechanism for custom-types (user defined)

SSM references and management

e possibility to define variables and constants of type SSM objects
(SystemElement, Activty, ReportingData, Event) and SSM Obiject
references

o SSM structure and SSMODjects traversing, search and query capabilities
as part of standard methods associated to SSMODbjects Data Types

& EUMETSAT

_ Language'TExtMerwew 2

Behavioral Enhancements
e actions handling (generalization of exception handling)
 Enhanced pre-conditions and confirmation rules capabillities

e Annotations as a way to extend capabilities of the language with
additional features not directly included In the Ilanguage
grammar/model

Other Enhancements

e procedure returned arguments
 Enhanced built-in functions

o Capability to define user custom functions

& EUMETSAT ,

: Language Definition

In terms of language definition the language grammar supports:

 a EBNF syntax expressed as PLUTO-like

« XML schema directly derived from the syntax

The syntax Is designed as a balance between:
e the original PLUTO natural language approach

« The need to support the new features with an optimized approach
(l.e. avoiding unnecessary “verbose” constructs)

& EUMETSAT ,,

E-70-32

Language Extension Examples

& EUMETSAT ,,

"h-h-

| Object Refef’enr?es‘r

Procedure ' testPlan variable of type |
testPlan: reference(SystemElement); <~ 5;:S-_;Xit:e:Q:E'E:T:5?2?::'3.:?!:?:5?:?&?:::::::;5
testCaselList: reference(SystemElement)[];«— . | USSICEEE S ESVEIELIR O e |

| Array of SystemE|ement Reference
et Find in the ssm objects reference |
step ExecuteTestPlan pointing to a SE of type TESTPLANE
TestPlan = ssm.find ("MainTestPlan", _ with name "MainTestPlan” |
' SE _TYPE_TESTPLAN,
; SSMOBJ_CLASS_SYEL); "'s"s"r-ﬁ-i's"éi"Q'I'EBéi'B'b]'é'c'f'i}é'féfé-ﬁé'émmi

testCaselList = TestPlan. getChlldren (SE_TYPE TESTCASE
SSMOBJ_CLASS_SYEL,
. LEVEL_AL L),

__

end step ExecuteTestPlan S N P |
end procedure . TESTCASE contained by TestPlan |

& EUMETSAT ,,

Actlons IGeheerceptlon -Handling

Procedure
testPlan: reference(SystemElement);
testCaselList: reference(SystemElement)[]; Ao Elosiin henelers fr cadi
,,,,,,,, 1 condition ’
step ExecuteTestPlan S T m—
.......... T S
TestPlan_SE = ssm.find ("MainTestPlan", SE_ TYPE_TESTPLAN,
SSMOBJ CLASS SYEL);

} handle ObjectReferenceNotFound {
print("Test Plan Not Found");
terminate();

end step ExecuteTestPlan

end procedure ¢E EUMETSAT
25

Inltlate and'%omtlons

testProcedureList: reference(SystemElement) [];
testProcedureList = TestCase.getChildren (....);

- Actions Block for
for (tprocldx=0; tprocldx < totalTestProcedures; tprocldx++) { - initiate and confirm

initiate and confirm testProcedureList[tprocldx] 4

--

print(testProcedureList[procldx].name + "confirmed.");
totalConfirmedTestProcedures++;

} handle NotConfirmed {
totalNotConfirmedTestProcedures++;
print(testProcedureList[procldx].name + " not confirmed.");
print("Reason:* + testProcedureList[procldx].messages);

& EUMETSAT

| Inltlate and"tonmtlons

Conflrmatlon Body with multiple complex rules with if-then-else brances
pOSS|b|I|ty to include statements on each conditional branch
The same capability is available for pre-conditions

If (totalConfirmedTestProcedures == totalTestProcedures) {
print ("Test Plan Successfully Executed");

confirmation

}else{
print ("Test Plan With Failed Procedures (" + :
totalNotConfirmedTestProcedures + " failed out of " +:
totalTestProcedures); 5

end confirmation

& EUMETSAT ,,

Brief Overview of

Adopted Technologies

& EUMETSAT ,,

| Technologlés ——

RT-SSM framework and RT-SSM Components (e.g. SUT I/F, test plan DB
definition, etc..)

e java

 OSGi (Eclipse Equinox) And Spring (springsource)

e components as formal OSGI Bundles

OSGi has been selected due to a number of essential benefits but mainly is in line
with the fundamental requirement to implement functionality (and add-on)
according to formal component design specifications instead of design guidelines

Language, modeling and supporting artifacts (parser, editor)
» Eclipse Xtext and EMF

Messaging and Integration
 ApacheMQ

« Apache Camel & EUMETSAT
29

Conclusions

& EUMETSAT ,,

* The verification infrastructure has retained all fundamental E-70-32
specifications and the adoption of the E-70-31 SSM Concepts

* The formalization of SSM as semantic model provides a formal and
generic paradigm to model all elements and entities in test domain

* The E-70-32 specifications and the identified extensions are believed
to provide a of test language constructs and features in support to a
wide range of automatic verification test scenarios and complexity

& EUMETSAT ,

* The E-70-32 extensions may contribute to the definition of a future revised version of the
standard. Such E-70-32 update activity could take into account:

» Lessons learned from E-70-32 applicability within existing systems as well as level of
tailoring defined within specific domains (e.g. the described verification infrastructure)

* Language features can be defined as grammar syntax and as XML schema, with XML used
for procedures interoperability

* The language features may be used as reference specifications on top of which higher
Domain Specific Languages (DSL) can be defined

DSLs built on-top of the E-70-32 can be used to define a language environment in support
to a specific problem domain within the space system, but at the same time....

...Mmaintaining compatibility and strong interoperability with the E-70-32 formal
specifications (grammar and XML schema)

Present technologies and tools are mature to support DSL definitions

& EUMETSAT ,

Thank You

& EUMETSAT _,

	Slide Number 1
	Agenda
	Missions Under EUMETSAT �Flight Operations Responsibility
	Mission Control System�Applications/Tools Functional Domain
	M&C Applications �Verification Infrastructure Initiative
	MCS Applications Delivery/Patches�Production, Verification and Roll-Out Process
	Infrastructure �Fundamental Required Features and Capabilities
	Core Components and Standards Adoption
	Slide Number 9
	Space System Model Concepts
	SSM as Common Semantic
	SSM Common Semantic In the Test Context
	Slide Number 13
	ECSS-E-70-32C
	E-70-32 Limitations – 1�Testing Environment vs. Flight Operations
	E-70-32 Limitations – 2�Handling, Interaction and Management of SSM References
	Slide Number 17
	Data Model Definition�Simple Type, Complex Types, Properties
	Data Model Definition�SSM Objects as Complex Data Type
	Language Extensions Overview - 1
	Language Extensions Overview - 2
	Language Definition
	Slide Number 23
	Object References
	Actions: Generalization of Exception-Handling
	Initiate and Confirm with Actions
	Initiate and Confirm with Actions
	Slide Number 28
	Technologies
	Slide Number 30
	Conclusions - 1
	Conclusions - 2
	Slide Number 33

