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ABSTRACT 

Spacecraft are complex systems. Changing one of its design parameter can have implications on the 
overall design and might become a crucial factor to mission success. In the early phases of spacecraft 
design, parameters as well as the mission goals are likely to change. These changes have to be applied 
carefully and need to be analyzed in respect to the whole system and the intended mission. The 
software Virtual Satellite supports this analysis by using an abstract model where the engineers can 
enter design data of their components. It allows describing operational phases of the spacecraft by 
defining modes such as Recharge or Science. These operational modes can be referenced by parameters 
to define individual values for them. Together with their respective mode durations, it can be 
determined for example how much energy is consumed in a specific mode or how much is produced. 
But this does not consider the influence of the parameter with respect to the overall mission goals. For 
example having a mission life time of 20 years and a spacecraft which spends too much of that time to 
maintain its power state, it remains unclear if the remaining time is long enough to gather enough 
scientific data as demanded by the mission requirements.  

This paper shows an approach to such problems based on formal verification. The data of the early 
phase model is used to create a state model of the spacecraft. Both, the model and the formalized 
requirements will be given to a model checker that automatically verifies on formal basis that the 
spacecraft complies with its specification. This method enables engineers to quickly check the design 
with respect to the mission requirements once they applied changes to it or to the requirements.  

INTRODUCTION 

A spacecraft is a complex system. Designing it requires the expertise and knowledge of various 
engineers from different domains. Most of their work and in particular the spacecraft components they 
are responsible for depend on each other. Changing just one parameter may have severe impact to the 
overall design. For example some new scientific equipment requires more power during flight.  This 
requires a stronger power sub-system including bigger solar panels and heavier batteries. As a 
consequence the mass of the spacecraft rises making it too heavy for the currently selected launcher. In 
the early design phase, the engineers need to be aware of such dependencies and their impact to the 
design. Therefore the German Aerospace Center (DLR) develops the software Virtual Satellite [1] 
which incorporates concepts of model based systems engineering. An integrated and consistent data 
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model covers all aspects from the design decomposition to the specification of parameters and 
calculations. Consequently changes to the modeled design can be traced and understood by the design 
team on-the-fly.  

During design time it is not just the components which are changed and adjusted. The requirements 
may change as well. E.g. in case that the intended mission-lifetime is not long enough to gather enough 
scientific data, it is possible that the design team decides to extend it. Accordingly, they need to be 
aware of the implications these requirement changes bring along. An extended mission lifetime might 
raise new demands to a propulsion subsystem for example. It is inevitable for the engineers to firstly 
being able to decide for changes by understanding their design and its dependencies. Secondly it is 
important that they can easily check the feasibility of the design right after such changes. 

One way to verify that the model complies with its specification and requirements is simulation [2] [3]. 
But during the early phase studies a lot of detail is missing that is necessary to properly parameterize 
the required models. Nevertheless, the early design phase allows for certain abstractions that lead to a 
different approach. Looking for example to the semi-conductor industry, formal methods are well 
established in order to check the design models of new integrated circuits against their specification. 
One of such methods is model checking, which extensively explores the state space of the models and 
check whether they comply with formalized specifications and requirements. In case conflicts are 
found the model checker generates a counter example highlighting the contradiction to the 
specification. This method helps the industry to counter the problem of rapidly growing complexity and 
the rising demands of maturity and quality [4].  

This paper will show an approach of applying the formal method of model checking into the early 
spacecraft design domain. Starting with the following section, this paper will introduce the model 
checking methodology. In the next section it will show how the design data model works and how it 
can be transferred to a representation that is suitable as input to off-the-shelf model checkers. 
Additionally it will present how mission requirements are represented by temporal logic. Before giving 
a conclusion the paper will show the model checking approach by an example discussing the 
advantages and disadvantages. 

MODEL CHECKING IN SYSTEMS ENGINEERING AND OTHER DOMAINS 

The term Model Checking refers to automated techniques to verify a model against its specification on 
a formal basis.  The model checker analyses the model and tries to find counter examples that violates 
the specification. It allows detecting design flaws earlier and right from the start before any code or 
further artifacts are generated from that model. This technique has gained great acceptance over the 
past years in quite different domains such as the semiconductor industry [5] [6]. Some work in that area 
has proven that it is possible to verify large chip design inheriting a complexity of up to 1020 states [7]. 
A selection of the dominant model checkers of the recent years are NuSMV, Spin, and Prism. NuSMV 
is open source and based on the early work of SMV done at the Carnegie Mellon University [6]. It 
incorporates different verification techniques based on binary decision diagrams (BDD) and 
propositional satisfiability (SAT). Additionally, it supports different dialects of temporal logic to 
formalize specifications. It is commonly applied to verify state machines being represented as Kripke 
Structures [8] [9]. Additionally NuSMV supports bounded model checking leading efficiently to 
minimum length counter examples [10] [4]. The model checker Spin [11] focuses on the validation of 
process interactions. It uses PROMELA [12] as an input language for the model whereas the 
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specifications are defined using linear temporal logic. It has been applied to a variety of applications 
including bus protocols, address protocols and fragments of TCP/IP. Prism has been developed for the 
analysis of probabilistic systems supporting two different types of Markov models. Instead of 
evaluating a formula whether it performs a transition in the state machine, like it is implemented in 
other model checkers, it uses probabilities to decide [13]. 

Besides the applications in various domains, some successful applications have also been shown in the 
space domain. E.g. it has been successfully introduced at the Jet Propulsion Laboratories to verify the 
correctness of command sequences using the model checker UUPAL [14] [15]. Aim of this verification 
was to make sure that no command sequence can harm or destruct the satellite. As a further example, 
the Java pathfinder project tries to transform Java code into PROMELA which is used as input 
language for the model checker Spin. Different to earlier approaches where Lisp code was translated to 
PROMELA, this project aims to create a framework that lets the software engineers check their Java 
code in their development process [16]. The COMPASS project evaluated on the usage of formal 
modeling and analysis techniques for software of modern spacecraft. Some verification tools such as 
NuSMV have been applied and extended. The results of the project were evaluated on a mission of the 
European Space Agency (ESA). Various models were created and verified in parallel to the ongoing 
software development in the actual project. Issues that were detected by the verification methods were 
fed back into the actual development of the spacecraft [17]. 

Another application for model checking is Planning. Planning focuses on the optimization and solving 
of problems such as the travel-salesman and puzzle games [18]. Some work has been conducted to 
evaluate the efficiency and effectiveness of the model checkers Spin and SMV compared to traditional 
planning tools. The work showed that under certain restrictions the model checkers can replace and 
compete with standard planning tools [19]. Different than model checkers, planning tools have already 
been applied to space domain problems like data downlink scenarios [20]. 

MODEL CHECKING OF EARLY SPACECRAFT MODELS 

In order to use model checkers to verify for the aforementioned changes to the spacecraft design or to 
the mission requirements, the early design data needs to be consistently transformed. The design 
software Virtual Satellite which is used as a modeling tool throughout concurrent engineering sessions 
offers this design data. Fig. 1 describes the internal data model that is used to store the design data as 
well as applied changes. The whole spacecraft design is stored in the StudyRepository which contains 
all relevant information of the spacecraft. The spacecraft itself is decomposed in a tree-like hierarchy 
using SystemComponents. The tree-like hierarchy is achieved by letting each SystemComponent 
reference to other SystemComponents declaring them as their children or subcomponents. Each 
SystemComponent contains Parameters which are used to represent certain aspects of a spacecraft such 
as a component’s mass or its power demand. Additionally, the data model allows specifying 
operational SystemModes of the spacecraft. It refers to the spacecraft’s operational state such as being 
in a special science mode, downlink mode or similar. Additionally, each mode has a duration 
representing the amount of time of being active. Depending on the active mode, characteristics of the 
spacecraft may change. This is reflected by the Values. Each Parameter has at least one Value which 
refers to a SystemMode. Having individual Values with the references to different SystemModes it is 
possible to model characteristics such as power demands depending on the operational mode of the 
spacecraft [1] [21]. 
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Fig. 1. The basic structure of the internal data model used in Virtual Satellite 

The software Virtual Satellite offers functionality to create sequences of operational modes already. 
These so called schedules can be used to analyze the change of parameters over time. Therefore, certain 
parameters of interest can be assigned to that schedule and being initialized by a given value to 
represent characteristics such as a charged power system. To analyze these parameters, their mode 
dependent values are integrated by the time the corresponding mode is active.  

Comparing these schedules to Kripke structures, which are a special representation of state machines, it 
becomes apparent that they suit well for model checkers and NuSMV in particular. To allow NuSMV 
to check the early design model it needs to be transformed appropriately. NuSMV declares variables 
which hold the accumulated values of the parameters of interest as they have been declared in the 
schedule. The operational modes are transformed to represent the states of that model. Depending on 
the state NuSMV uses the parameters to affect the accumulated values as well as the accumulation of 
time which is defined in the SystemModes of the data model. Fig. 2 shows a NuSMV compatible model 
of a simple spacecraft. The section VAR defines the variables of the checkable mode. The definition 
contains the name of the variable as well as its range of values. The variable state represents the 
operational modes of the spacecraft. The ranges for time and charge are arbitrary and are chosen as 
days and percent in this example. The ASSIGN section defines the assignments to the variables. Here 
they are first initialized with a given value. The first next block defines the possible changes of the 
spacecraft’s state which can be either one of the enclosed enumeration. The second next block gives an 
example of how the time parameter is accumulated depending on the current state of the spacecraft. 
Further next blocks for various parameters can be added if needed. The values within the case block are 
chosen depending on the truth of the attached logical expressions. The special expression TRUE 
denotes the default case for the case block. 

With the checkable model using the information from the early phase spacecraft design model, the 
requirements to that model still need to be specified. NuSMV uses temporal logic to specify them. The 
section LTLSPEC (see Fig. 2) describes our temporal logic for checking the model. The letter G is used 
in temporal logic to express that a certain property has to always hold. The arrow expresses causality 
similar to an if-then statement [5]. The complete expression can be translated to: “If the spacecraft is 
always safe then it is never able to reach the mission goal safely.” The expression might be confusing 
since it is obvious that if the spacecraft is safely designed it can fulfill its goals. But model checkers try 
to find a counterexample to the specification. Accordingly, the model checker will give a 
counterexample where the spacecraft is always safe and reaches the goal safely. This temporal formula 
leads to an easy and separated description of safety constraints and mission goals. Within the example 
two safety constraints are described by logical expressions stating that the battery and the storage 
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device should stay within reasonable operational conditions. This simple description by using logical 
expressions provides easier access for engineers than temporal logic. 

 
Fig. 2. A sketch of a checkable model that has been created out of the information of an early phase 

design model 
 

Implementation in the Design Process and Performance Considerations 

To support the design sessions, the Software Virtual Satellite together with the model checker should 
enable engineers to quickly evaluate design or requirement changes. Within Virtual Satellite each 
engineer should be allowed to start the model checking tool. The results of the model checking run can 
influence the decisions of the engineers and accordingly influence their design. 

A reasonable computational performance is necessary in order to allow such quick iterations and design 
verifications. The problem size that needs to be explored depends on the model, its amount of states 
and variables, and finally the amount of mode transitions. NuSMV utilizes various techniques to reduce 
the problem size; still in this case it leads to a theoretical problem size of MS where S is the amount of 
scheduled operational modes and M the amount of operational modes within the spacecraft. As a 
consequence an increase of the requirement for the maximum mission life time leads to an 
exponentially increased demand for computational power and time to run the model checker. Fig. 3 
shows some calculation results that were performed on a standard off-the-shelf notebook. A calculation 
time of some minutes sounds reasonable and applicable during design sessions but further increases in 
mission time will increase the computational demands dramatically. In order to keep the evaluations as 
quick as possible the mission time and its transitional change needs special attention. Depending on the 
demands of the mission, it is either possible to just verify a certain time frame of the overall mission or 
to decrease the level of time-detail. E.g. this can be achieved by modeling the mission time with the 
detail of orbit revolutions instead of hours or minutes. 

MODULE main 
VAR 
 state: {SCIENCE1, SCIENCE2, CHARGE, DOWNLINK}; 
 time :   0 .. 1000; 
 charge : 0 .. 100; 
 ... 
ASSIGN 
 init(data)   := 0; 
 ... 
 init(state)  := SCIENCE1; 
 
 next(state) := case 
  TRUE : {SCIENCE1, SCIENCE2, CHARGE, DOWNLINK}; 
 esac; 
  
 next(time) := case 
  state = SCIENCE1 : time + 2; 
  state = SCIENCE2 : time + 2; 
  state = CHARGE   : time + 4; 
  state = DOWNLINK : time + 1; 
  TRUE             : time; 
 esac; 
 
 next(charge) := case 
  ... 
 esac; 
 

... 
DEFINE 
 safe := charge > 5 & charge < 100 & data >= 0 & data <= 100; 
 goal := time > 50; 
LTLSPEC 
 G ((safe) -> G !(goal & safe)) 
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Fig. 3. Influence and exponential increase of the computational time versus the mission time as 

described in the mission goal 

In conjunction with the computational power it is important to keep in mind that this type of 
verification is not complete because it is based on bounded model checking. Bounded model checking 
iteratively increases the amount of transitions from state to state until it reaches a counterexample [4]. 
In certain cases it could be possible that the whole problem space needs to be explored before finding a 
counterexample or not. Therefore, NuSMV restricts the maximum length of the counterexample. This 
boundary can be parameterized and needs to be set according to the problem. In the given example it 
needs to allow for enough changes to satisfy the mission time goal criteria. In case that the parameter is 
too small, the model checker will evaluate all possible state transitions without finding a 
counterexample. First of all this will consume a lot of computational time and second it might lead to a 
possible false assumption about the feasibility of the mission. 

The third concern that has to be highlighted is the abstraction of the spacecraft. In order to allow for a 
useful application of model checkers it is not only necessary to abstract the mission time. The 
DownLink mode handles the amount of data stored on the spacecraft but not the actual data transmitted 
to the ground. It would be possible to easily model the amount of data that is transferred to the ground, 
but it becomes difficult to model correct contact times. Within our simple model the transition into the 
downlink mode is applicable at any time whereas in reality a contact between the satellite and a ground 
station is required. Since it is not possible to implement a detailed orbit model and ground contact 
model, it is still possible to abstract the ground contact on a stochastic basis. Fig. 4 shows a simple 
example how it can be implemented as a further mission constraint. Assuming that time reflects full 
orbit revolutions, the variable orbit calculates the modulo of the time to the basis of ten. The following 
downlink_constraint which is part of the safety expression restricts the transition into the DownLink 
mode to the first four out of ten orbits. 

 
Fig. 4. Definition of a restriction to the transition to the downlink mode 
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DEFINE 
orbit := time mod 10; 
downlink_constraint := (state = DOWNLINK) & orbit < 4; 

  
 safe := downlink_constraint & ... 
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CONCLUSION 

This paper presents that it is possible to use the early design data of a spacecraft and to transform it into 
a state model. This state model can be used to understand and in particular verify that the designed 
spacecraft fits to the mission requirements. But for the purpose of verification, the model needs to be 
accompanied by a specification and a model checking tool. The model checking tool is the central 
element to compare the model to its specification. The specification which is normally provided as 
temporal logic can be abstracted to two types of logical expressions. The first one describes the mission 
goal like the expected mission duration, whereas the second one describes operational constraints such 
as data storage capacity. This separation provides easier access for the engineers than using temporal 
logic itself. In order to apply this method to the early design process it needs to be possible to evaluate 
each change to the spacecraft’s parameters or to the mission requirements. Therefore the verification 
needs to be executed easily and quickly. As a consequence different levels of abstraction are needed 
and have to be balanced between detail and computational power demands. In particular, verifying that 
the satellite design is feasible over the entire mission duration becomes impossible on a reasonable 
level of abstraction. In this case it is necessary to consider the important parts of the mission. 

All together this work shows that it is possible to use formal model checking techniques in the early 
design phase of a spacecraft. This enables the engineers to quickly verify that a spacecraft meets the 
requirements of the intended mission obeying lack of detail due to certain abstraction.  
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