New CCS technology protoyping

12th International Workshop on Simulation for European Space Programmes - SESP 2012

Claude Cazenave, Harald Eisenmann

Astrium Satellites

Outline

- Astrium CCS background
- Lessons learnt
- Prototyping
 - Middleware : ZeroMQ
 - Data modelling : EMF
 - Procedure language : Java

All the space you need

Astrium background : Open Center

 Component framework designed for both EGSE CCS and Spacecraft Control Centers

- Designed for high scalability
- Typical configurations made of:
 - A server
 - A redundant server for Control Centers
 - 1 to many client workstations
- Generally more than 40 processes running on several Linux computers

Astrium background : SimOPS

 Lightweight monitoring and control system orginally designed for simulation verification but also used for On Board Software validation (SVF)

- User MMI is also a server
 - One process for the server and one for each running procedure
- Java language for procedures
- Plugin/ OSGi architecture
 - JDT: java editor and debug
 - JSynoptic: user defined displays
 - SimMF: simulation modelling tool

Lessons learnt (1/3)

- Complex systems are not only difficult to develop or to maintain, they are also difficult to configure by the end user
 - Select architecture enabling very simple but scalable configurations
 - Very simple configuration is a single PC with a minimum number of running processes : 1 or 2
 - Complex architecture is with a redundant server and with many client computers connected to the system

All the space you need

Lessons learnt (2/3)

- Use of de facto standards : some example
 - Procedure language
 - Takes benefits of well known and well supported language : not yet another language
 - OBSW team requires compiled and typed language
 - One solution is to use Java
 - Modelling language
 - UML2 for conceptual data model
 - Ecore (EMF) for technical data model

All the space you need

Lessons learnt (3/3)

- Real time performance is always an issue
 - Strong recommendation is to check if the most efficient solution fits with the other needs
 - A scalable solution shall take benefits of the various configurations
 - Inter thread communication for single process cases
 - Inter process communication for single computer cases

All the space you need

MOMs

Message Oriented Middleware in place of remote procedure calls (CORBA, RMI, RPC,..)

Most popular solutions

- RabbitMQ
 - Compliant with AMQP protocol
 - Broker achitecture
 - Easy to use and deploy but some latency due to the central broker
- ActiveMQ
 - Compliant with JMS standard
 - Broker or P2P architecture
 - Very generic and easy to use but slower than RabbitMQ
- ZeroMQ
 - Lightweight messaging system
 - Library architecture, no broker
 - More complex to use (low level) but faster than the other ones (takes benefits of the configuration and manages multicast TCP/IP)

ZeroMQ, parallelization

A generic solution to parallelize computations, less taking care about synchronisation issues

Parallel pipeline with PUSH/PULL

To be combined with a marshalling solution where needed (e.g. not for TM packets)

All the space you need

ZeroMQ, analysed architecture

Eclipse Modelling Framework and related technologies

- Application of proven technologies
 - From UML to java
 - UML to eCore
 - Technical data model
 - eCore to Java
 Data persistence : XMI (and binary format)
 Simple editors (need for a customized code generation)
 - Use of OCL to define constraints
 - Constraints are embedded in the metamodel to define their scope of application
 - Use of QVTO for model to model transformation
 - Example :
 - UML metamodel for MIB files
 - UML metamodel for data base
 - QVTO to define mapping between the 2

UML TM/TC Meta model example

All the space you need

EMF TM/TC editor example

٢.	

All

ilter ite	ms (*,?)
	inner = S2T00003 : Inner Paramete
	inner = S2T00004 : Inner Paramete
	♦ inner = S2T00267 : Inner Paramete
	inner = S2T00009 : Inner Paramete
	OBSW_MonitoringId477BackInLimit :
	ACC_TcmdAcptFailNcountWrng : Par.
	ASM_TimersDlyInMagStartingProcess
	OBSW_MonitoringId405OutOfLimit :
	A
	inner = SCT00257 : Inner Paramete
	<pre>inner = SCT00258 : Inner Parameter</pre>
	inner = SCT00259 : Inner Paramete
	inner = SCT26800 : Inner Paramete
	inner = SCT26801 : Inner Paramete
	inner = SCT26802 : Inner Paramete
	inner = SCT00160 : Inner Paramete
	inner = SCT00161 : Inner Paramete
	inner = SCT00162 : Inner Paramete
	inner = SCT00163 : Inner Paramete
	inner = SCT00164 : Inner Paramete
	inner = SCT00165 : Inner Paramete
	inner = SCT00166 : Inner Paramete
	inner = SCT00167 : Inner Paramete
	inner = SCT00168 : Inner Paramete
	inner = SCT00169 : Inner Paramete
	inner = SCT00170 : Inner Paramete
	inner = SCT00171 : Inner Paramete -
(4 III

Inner Parameter					
Base Element @ Missi	ig reference 🥔 🖉				
Offset 0		14	Time Offset	0.0	
Parameter * <u>SCT0</u>	258 (Engineering Pa	rameter)	Ø Ø		
 Parameter Overview 					
Base Element 🔍 Mi	sing reference 🖉 🎸	9			
Composed Of	glish (Description) V param id (Alias) (Parameter Raw Valu Vibration Step	<u>e)</u>			
Name SCT0	0258				a bd
Ground System Upda	e Mode Automatic				•
Parameter Source 🔶	Acq Eqt Parameter	0 0 14			
Raw Length 0					
Engineering Data Typ	e 🔶 <u>String (String)</u>	004			
Raw Data Type 🔶 <u>Er</u>	umeration (Enumerat	tion Data 1	[<u>ype)</u> @ @ 14		
Engineering Display F	ormat 🔍 <u>Missing ref</u>	ference	° @ 14		
Raw Display Format	Missing reference	00 14			
Engineering Unit 🔍	Aissing reference	Ø 14			

Java

- Current solution at Astrium Satellites to validate the On Board SoftWare
- Well known language, easy to learn, state of the art development environment (editor and debugger)
- Compliant with ECSS E70 32
 - Specific features are implemented using a base class
 - Compiled and typed
- Compliant with EGS-CC requirements for debugging and command retry
- And much more:
 - Scripting language interface
 - Annotations

Current approach: TCs are intrepreted

Based on MIB files information

All the space you need

New approach, TCs interface is compiled

- Example of implementation using ASM byte code generator and RangeDB
 - <10 seconds to generate 3000 TCs</p>
 - 3KB per TC (average)

Conclusion

- Activities are to support Astrium activities in EGS-CC Systems Engineering Team
 - All results to be contributed to EGS-CC
- Prototypes confirm the benefits of these three technologies
- Potential next domains to be analyzed:
 - Component Framework (OSGI + ?)
 - Data archiving
 - User defined displays
 - Scripting language
 - Service integration platforms

All the space you need

Thanks for your attention

Claude Cazenave, Harald Eisenmann

ACE8

ASTRIUM Satellites

Email: claude.cazenave@astrium.eads.net

harald.eisenmann@astrium.eads.net

All the space you need