
 
 

 
SESP 2012: Simulation and EGSE facilities  1  ESTEC ~Noordwijk 
                     for Space Programmes        25-27 September 2012
   

PROTOTYPING FOR NEW CCS TECHNOLOGIES 
 

Claude CAZENAVE 

Astrium Satellites 
31 Rue des Cosmonautes 

31402 TOULOUSE 
claude.cazenave@astrium.eads.net 

 

ABSTRACT 
Astrium Satellites is highly contributing to the development of the next generation CCS project, 
currently named EGS-CC, with the objective of a European harmonisation applicable to all primes, 
agencies in the scope of EGSE and Control Center.  

In the past, ASTRIUM Satellite has developed 2 different CCS product lines to cope with different 
needs: 

• a very generic product compatible with EGSE and control centre needs : Open Center 
• a light weight approach compatible with lightweight EGSEs like Software Verification 

Facilities : SimTG SimOPS 

To propose its best contribution to EGS-CC, Astrium Satellites is currently prototyping technologies to 
be proposed in the frame of EGS-CC. For the best analysis, Astrium Satellites prototyping is performed 
in a first step at technology level and then are integrated into our lightweight solution, SimTG SimOPS 
[1], for early user validation. 

The recommended technologies are in particular around the topics of middleware, test language and 
closer integration with the system database. The current developments are thus focusing on: 

• ZeroMQ : a middleware technology, message oriented, used to distribute TM parameters to the 
various applications in a very efficient way. This technology enforces parallel programming and 
provides the smallest communication overhead depending on the need (collocation in the same 
process, in the same machine or no collocation at all). 

• Java: a well-known software language to be used as test language. This language benefits of the 
state of art development environment (editors, debugger). This brings at no cost a solution 
compatible with the requirements and very mature. 

• EMF: a generative approach to integrate the EGS-CC M&C data model. By using the same data 
model, we can fully generate the run time data model for EGS-CC without needing to develop 
intermediate data structures and the related SW. It simplifies the import of data from the system 
data base (e.g. RangeDB for ASTRIUM Satellite). In addition, combined with the previous 
technology, we can generate a compiled TM/TC interface enabling on the fly checking (i.e. 
during the edition and without compiling) of TM/TC use in the test sequences. 

This paper will provide the technical approach / selected technologies and the results / 
recommendations learnt during these prototyping phases. 

 

mailto:claude.cazenave@astrium.eads.net


 
 

 
SESP 2012: Simulation and EGSE facilities  2  ESTEC ~Noordwijk 
                     for Space Programmes        25-27 September 2012
   

INTRODUCTION 
From our long term experience in developing CCS products, Open Center or SimTG SimOPS, Astrium 
Satellites has a good knowledge of the cost to maintain these software applications. This maintenance 
cost is not only at developer level but also at user level due to the complexity of these systems and the 
need to provide immediate fixes in critical phases of spacecraft development. In particular, we consider 
that the configuration of a CCS for a given usage is a key issue in the maintenance cost. This brings a 
first recommendation for technology and architecture choices: keep the configuration simple as much 
as possible and for complex things do not reinvent the wheel and rely on well proven technologies for 
what concerns management of complexity. Concerning configuration, the link with other sources of 
information like the system database have been a huge source of cost and delay. This has to be tackled 
by thinking about technologies that are either common or provide efficient bridges to exchange 
information.  

In addition, this experience shows that the real time performance of these systems is always a main 
concern. This applies not only to the running phase but also to the setup/initialization phases or to the 
analysis phase. This brings a second recommendation to use, when possible, the fastest technology for 
these critical parts. The middleware used to exchange information between the various EGSE and 
Control Center computers is clearly the most critical part. 

Last but not least the use of state of art technologies, already well adopted by the computer users, is an 
approach leading to a better adoption of the tools we develop. This only concerns the parts visible to 
the end user like graphical man machine interfaces and test procedures. Java language, since many 
years, has been selected for SimTG SimOPS test environment, as an alternative to specific languages 
part of the current CCS. This language is well known, often taught and takes advantages of state of the 
art tools and technologies for editing and debugging. Thus it is also a recommendation to use it for a 
new CCS but with a revised approach to take into account user’s feedback and to take benefits of a 
better integration with the database. 

As a result of these recommendations, Astrium Satellites is prototyping the following technologies: 

• Zero MQ for data distribution 
• EMF for interoperability with new system databases 
• Java for test procedures with a revised approach 

The next chapters will introduce each technology and the results of the related prototyping phase. 

 

 

ZEROMQ 
Extract from Wikipedia : ØMQ 

ØMQ (also spelled ZeroMQ, 0MQ or ZMQ) is a high performance asynchronous messaging library 
aimed at used in scalable distributed or concurrent applications. It provides a message queue, but 
unlike message oriented middleware, a ØMQ system can run without a dedicated message broker. The 
library is designed to have a familiar socket-style API. 

This well summarizes the reasons why we selected this technology [2]. 

http://en.m.wikipedia.org/wiki/%C3%98Q


 
 

 
SESP 2012: Simulation and EGSE facilities  3  ESTEC ~Noordwijk 
                     for Space Programmes        25-27 September 2012
   

First of all, it is high performance and indeed we measured that it is faster than other messaging 
technologies based on JMS Standard (rabbitMQ, ActiveMQ, ...). The prototype demonstrated we can 
distribute more than 10Mbytes of raw data per second to several computers (on Astrium Satellites 
LAN, i.e. including routers) while keeping a very low CPU and memory consumption on the computer 
providing these data. One of the reasons why this technology is faster is that it relies on very low level 
(it is also why it has a socket style API). This has some drawbacks since it does not provide out of the 
box marshalling of the data. But it gives the freedom to perform our own wrapping with a tuning very 
specific to our use cases. It is important to note that in all cases a wrapping of such technology is 
mandatory since they are subject to changes. Compared to the previous designs where the data 
exchange was performed using CORBA middleware, this message oriented technology provides more 
flexibility to perform parallelized computation and data distribution without having to take care about 
multi-threading issues. In addition, an optimized protocol can be used according to the needs: inter 
thread exchange, inter process exchange on the same computer or inter computer exchange. The next 
figure describes some typical use cases of message oriented architectures. 

 

 

Fig1: Use of message oriented architectures 

The second reason for selecting this technology is that it can be used without a message broker. This is 
very useful when we want to configure a CCS system on a single computer and if possible in a single 
process. Use cases like Software Verification Facility will take benefit of such simple architecture for 
both the setup time and the acceleration factor on batch mode test cases (for instance when connected 
to a numerical simulator). 

The architecture we defined for the prototyping was first targeted to the use case of a lightweight CCS 
connected to a numerical simulator. A lightweight CCS is a software application (i.e. one process) 
which provides a man machine interface but can also run in batch mode (i.e. without graphical 
interface). The architecture was then scaled to a distributed use case described in the next figure. 

Parallel pipeline with PUSH/PULL

Request and Reply
Publish-Subscribe



 
 

 
SESP 2012: Simulation and EGSE facilities  4  ESTEC ~Noordwijk 
                     for Space Programmes        25-27 September 2012
   

server

SCOE (e.g.: TMTC FE) 

SCOE (...) 

TC
External
interface

TM
External
interface

TC
External
interface

TM
External
interface

TCP/IP

TCP/IP

TCP/IP

TCP/IP

Scheduler

Test procedure

derived parameters

TM 
decommutation

TM 
decommutation

User computer/
Test procedure editor & 
debug

Procedure debuger

User computer/
Synoptic preparation & 
display

Synoptic display

User computer/
Test procedure editor & 
debug

Procedure debuger

User computer/
Test procedure editor & 
debug

Procedure debuger

User computer/
Synoptic preparation & 
display

Synoptic display

User computer/
Synoptic preparation & 
display

Synoptic display

Test procedureTest procedure

Archiver Archiver Archiver

0MQ inter thread

0MQ inter process

0MQ inter computer

 

Fig2: Targeted architecture 

Without changing the synoptic (user defined displays) already in use at Astrium Satellites, we 
integrated data flows coming from simulated SCOEs to analyse the behaviour of the system using both 
local and distributed ZeroMQ communication links. This prototype demonstrates that both the 
performance and the configuration aspects are compliant to the needs. 

EMF 
EMF stands for Eclipse Modelling Framework [3]. It provides its own modelling language, eCore, and 
automatic generation of Java source code of a model defined in that language.  Astrium Satellites is 
using this technology to implement its new System Reference Data Base: RangeDB. Here is a quick 
summary of the Model Based approach used to develop RangeDB. 

The starting point is the UML model, also called meta-model, of the data to be managed. For instance 
this model defines that a TC packet relies on a generic packet definition which contains a header, a data 
field and a trailer and that all these packet elements are defined using container of parameters. The next 
diagram is a simplified UML model for TM/TC packet and parameters. 



 
 

 
SESP 2012: Simulation and EGSE facilities  5  ESTEC ~Noordwijk 
                     for Space Programmes        25-27 September 2012
   

Packet

Container

ParameterContainer ParameterOffsetInContainer Parameter

0..1

+parameter

11

+innerParameters

*

0..1

+dataField0..1

0..1

+trailer

0..1

0..1

+header

1

TMPacketTCPacket

 
Fig3: Simplified UML model for TM/TC packet and parameters 

EMF, thanks to a lot of customization features, allows to automatically generate all the Java classes 
used to persist the definition of these TC packets and the man machine interface to edit this definition. 
Here is an example of RangeDB user interface automatically generated thanks to EMF. 



 
 

 
SESP 2012: Simulation and EGSE facilities  6  ESTEC ~Noordwijk 
                     for Space Programmes        25-27 September 2012
   

 

 
Fig4: RangeDB packet/parameter editor 

 

In this context, it is worth to mention two additional technologies used for RangeDB together with 
EMF: 

• OCL [4]: the Object Constraint Language is a language to define constraints to be verified by 
data stored in structures defined with a meta-model (e.g. UML or eCore). Once defined these 
constraints are automatically embedded in the application and provide reports and error 
highlighting in the editors with description of the not verified constraint. 

• QVTO [5]: a language dedicated to model transformation. It operates on EMF/eCore models 
and allows transforming data defined in one EMF model into data defined in another EMF 
model. It provides imperative operations to structure the transformation and relies on OCL for 
model navigation. This is used to import or export data to/from RangeDB like for instance 
SCOS2000 MIB data. 

Based on the experience acquired within RangeDB, the same approach, with a different customisation 
of the code generation, is applicable to EGS-CC to generate runtime software for sending TCs and for 
TM decoding. In addition, since we are using a RangeDB model compliant with the one defined in 
EGS-CC System Engineering Team Conceptual Data Model [6], the transformation of data defined in 
RangeDB into data compatible with EGS-CC should be rather straightforward. 

The next chapter describes the use of Java procedures sending TCs according to an interface generated 
from a system database. 

 



 
 

 
SESP 2012: Simulation and EGSE facilities  7  ESTEC ~Noordwijk 
                     for Space Programmes        25-27 September 2012
   

JAVA 
Java is already used for writing test procedures in SimTG SimOPS tool [1]. This has given full 
satisfaction to the end users because it is a well-known language, it is object oriented (and this is quite 
helpful for software validation) but easy to learn and it ptovides many solution for integration with 
other software elements (database, scripts,…). Using the current implementation,TC sending with Java 
procedures, is similar to figure 5: 

 

Fig5: Sending TCs with current version of SimTG SimOPS 

The limitation of the test sequence example here above is that it does not check the validity of the TC 
name nor its parameters until the TC is sent. In other words the procedure is not checked at compilation 
time but at execution time. It is not a huge problem during the writing of the procedure since the tool 
provides TC browser that allows users to drag and drop TC names and TC parameter names. The 
problem is more when TC definition changes because it is not easy to check where the invalid names 
are. In addition there is no check on the parameter types (integers, real, strings or enumerates) and this 
is error prone. 

So, to improve the current situation, the idea is to provide a so called “executable interface” of the TCs 
defined in the data base. An “executable interface” is a compiled interface that can be used to check, at 
compilation time, the validity of its use. Nowadays, state of art editors for Java language provides on 
the fly compilation of the source code. This brings an immediate feedback in terms of validity of the 
procedure to the writer. Moreover it provides a contextual help to discover what the TC parameters are 
and what the possible choices for enumerated values are. The next figure illustrates the writing of the 
same TCs using the new approach. 



 
 

 
SESP 2012: Simulation and EGSE facilities  8  ESTEC ~Noordwijk 
                     for Space Programmes        25-27 September 2012
   

 

Fig6: Sending TCs with future version of SimTG SimOPS 

An executable interface is a set of Java classes that are generated automatically from the data base. We 
have prototyped this code generation using a byte code generator to ensure that both the compilation 
time and the memory foot print of the TCs are the lowest. ASM [7] is the Java byte code generator used 
for the prototype. It was selected because it provides a powerful Eclipse plugin to ease the writing of 
the Java source code in charge of the generation of the Java byte code. As a result, it takes less than 10 
seconds to generate 3000 TC Java classes from their definition in RangeDB tool (including the loading 
of the database) and the memory foot print average for each TC (it depends on the number of 
parameters) is 3Kbytes. It means a total around 9Mbytes for the TCs, without any compression, and it 
is considered as small enough to ensure the scalability of the system. 

 

  



 
 

 
SESP 2012: Simulation and EGSE facilities  9  ESTEC ~Noordwijk 
                     for Space Programmes        25-27 September 2012
   

CONCLUSION 
The results achieved in this prototyping phase are fully in line with the expectations. Astrium Satellite 
will continue the integration of these technologies in our lightweight CCS environment and will 
provide analysis of other technologies that have to be selected for EGS-CC. Here is the list of the 
domains to be analysed sorted according to their priority (highest first): 

• Component Framework 
• Data archiving 
• User Defined Displays 
• Scripting language 
• Service integration platforms 

 

REFERENCES 
[1] SimTG SimOPS User Manual (SIMTG-UM-0010-ASTR), Issue 1.0, 23-Jan-2012 

[2] ZeroMQ : http://www.zeromg.org 

[3] EMF: http://www.eclipse.org/emf 

[4] OCL: http://www.omg.org/spec/OCL/2.0 

[5] QVTO: http://www.eclipse.org/m2m 

[6] EGS-CC System Engineering Team Conceptual Data Model (EGSCC-SET-TN-1004), Issue 1.1, 
30-05-2012 
[7] ASM: http://asm.ow2.org 

 

http://www.zeromg.org/
http://www.eclipse.org/emf
http://www.omg.org/spec/OCL/2.0
http://www.eclipse.org/m2m
http://asm.ow2.org/

	Prototyping for new CCS technologies

