

High Performance Instrument & Payload EGSE

Andy Armitage aba@terma.com SESP 2012

CONTEXT

Complex Instruments & Payloads

I/PL-EGSE- testing at subsystem levelCCS- testing at platform level

I-EGSE can include

- Full TMTC processing of a CCS/MCS **plus**
- Direct electronics interfaces
- Real-time simulation interfaces
- Platform simulation functionality
- Live Science viewing
- "SCOE" interface to CCS

Usually

- Relatively "intricate", higher performance
- Single user
- Lower budget

EXAMPLE FEATURES & REQUIREMENTS

Database

- Keep separation of subsystems
- Drop/load/continue
- Online contents viewing
- TM simulation

Interfaces

- Protocol Flexibility
- Direct FE Access
- (RT) Simulation
- "SVF mode"

Fast archiving & distribution

- Science data processing
- Visualisation

Spacecraft Platform Simulation

- I-EGSE
- P/L EGSE

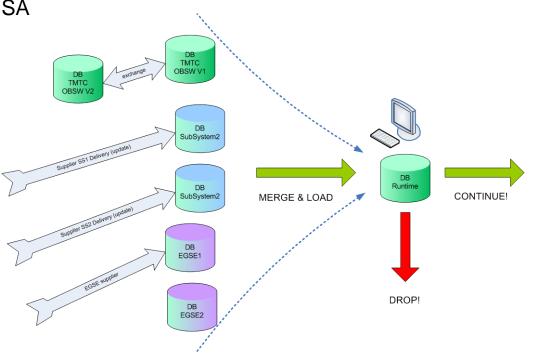
end user needs <u>a lot</u> of flexibility

TMTC DATABASE

G

Instrument and payload primes have to prove that their unit can be operated.

 ding TMTC database in same form as ESA use (MIB)


Database partitioned:

Platform,

Payload,

EGSE internal, ...

- Different partitions change at different times....
- Need flexibility to replace different partitions
- Needs to be quick to try out & revert changes

TMTC DATABASE

Need to be able to **see** & **check** <u>online</u> what is currently been loaded.

- Search & filter fields
- Show the original partition

TM		TC				Show Search/Filte		ilte
SOURCE	CCF_CNAME	CCF_DESCR	CCF_DESCR2	CCF_CTYPE	CCF_CRITICAL	CCF_PKTID		-
swirDb	XTS00001	SWIR Register R	Get/Set content	s	false	XTSRGHDR	0	
swirDb	XTS00002	SWIR Register D	Get/Set content	s	false	XTSRGHDR	0	:
uvnDb	XTU00001	UVN Meas Con	UVN-DEM TC	s	false	NONE	0	
uvnDb	XTU00002	UVN Temp Con	UVN-DEM TC T	s	false	NONE	0	L
uvnDb	XTU00003	UVN Req TM P	UVN-DEM TC R	S	false	NONE	0	
•	III							
CDF CCF	CPC PTV PST	F PSV PVS	PSM CCA I	PAF PAS PR	V PRF CVS	CVE CVP	тс	đ

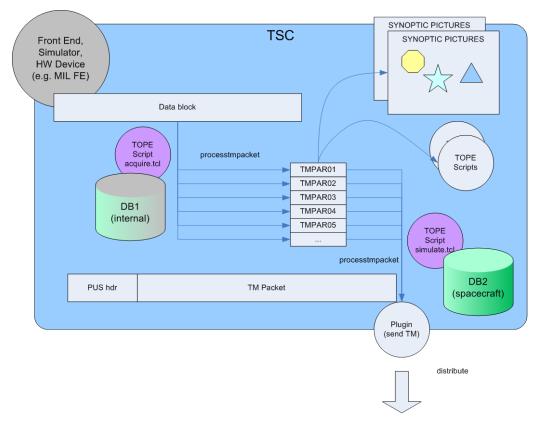
Note: MMI does not <u>have</u> to be advanced. No need to overdesign. Users are smart.

Obvious potential for enhancement

TM SIMULATION

Packets <u>IN (CCSDS, PUS)</u> Data blocks <u>in</u> (e.g. 1553 message)

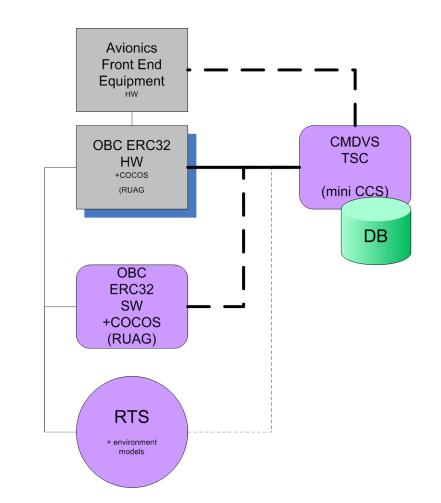
Need to be able to "decommutate" blocks that are not packet


Need flexibility (scriptable) & possibility to visualise TM parameter values locally

Generate according to DB.

Packets OUT (CCSDS, PUS)

- EITHER rearrangement of the same data according to a different packet layout (e.g. from a different database)
- OR specific values for <u>one</u> packet
- \Rightarrow Extremely useful!
- \Rightarrow Just need to invert TM processing

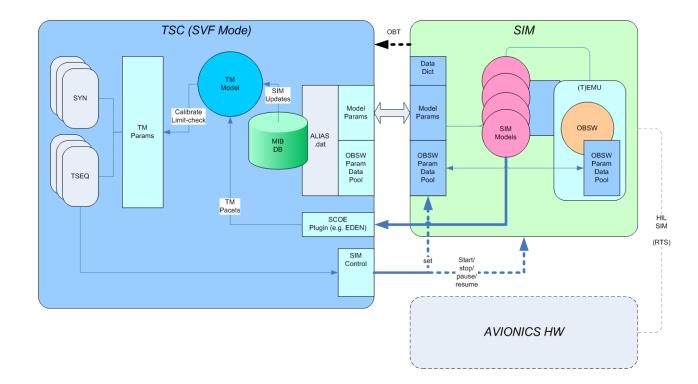

RT SIMULATION & SVF MODE

For many "platform simulations" test language scripting is fast enough, and the most flexible solution.

May need to host an emulator

In some cases a very specific, predictable maximum latency closed loop reaction is required

SVF mode allows the TSC to follow the simulation time (pause, resume, speed up, slow down)


7

RTS => EUROSIM

e.g.

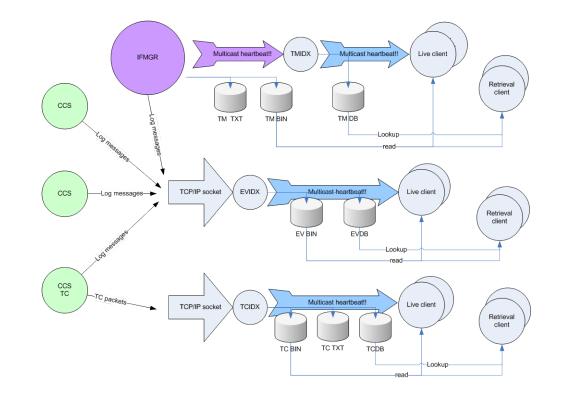
% package require eurosim

(SCIENCE) DATA DISTRIBUTION

Need mechanism for "high rate" data distribution & archiving

Typical = SPW, CameraLink

Would be X-band instead of S-band


Source can be:

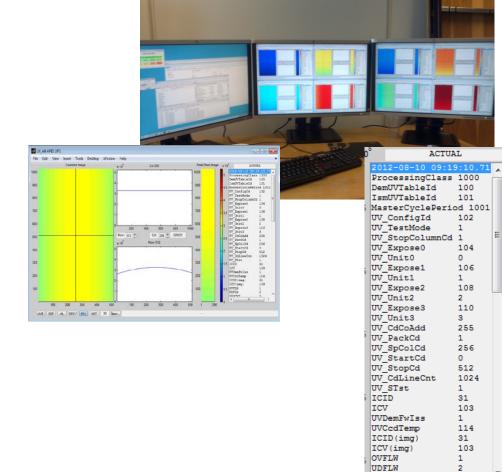
- Electronic Front End
- TSC itself

We use UDP "heartbeats" to announce arrival of new packets in the archive

Archive is just a directory on a disk "somewhere" (configured)

Also used in CCS archiving

QUICK LOOK TOOLS


Used for examining (test) contents of science packets

Not a full scientific analysis

- Graphing
- Image Display
- Archive browsing
- Live views

Use MATLAB

- Set up as "heartbeat" client
- Some (limited) TM processing based on MIB, but is not as fast as TSC
- Flexible, end user is often MATLAB expert

Control from TSC via tclMATLAB

DDSCNT

111

SUMMARY

Provides a **flavour** of the kind of flexibility needed at instrument & payload level

Trick is to try to avoid hard coding in project specific way....(enhance scripting language)

- Keeps product generic
- Allows the next project to benefit

Thanks for listening!

"""