
A DSML Based Approach for Simulating
On-board Equipments in Space

Applications

 Bálint Sódor
Gábor Tróznai, Sándor Szalai

 Wigner Research Centre for Physics, Hungarian Academy of Sciences, HUNGARY
sodor.balint@wigner.mta.hu

troznai@wigner.mta.hu

SGF Ltd., HUNGARY
szalai@sgf.hu

mailto:troznai@wigner.mta.hu
mailto:szalai@sgf.hu

Introduction – About us
• Wigner institute of the Hungarian Academy of Sciences

and Space and Ground Facilities Ltd.
• Few decades on the field of space system research

• Development of EGSEs and on-board equipments
• From our point of view space systems we are currently focusing

on can be characterized as the following
• Distributed reactive autonomous
• Embedded, fault tolerant and highly reliable
• Limited resources

• Participated in many missions

Introduction – LSS 1

• Philae
• Our task: CDMS

• Central computer of a
distributed system

• 6 subsystems, 9 scientific
modules

• Long term mission, reduced
maintainability

• Training operation staff
• Robustness, fault tolerance

• Limited resources

• ESA approved the
ROSETTA mission
in 1993

• Comet
observation
• Orbiter + Lander
• Long-term mission

Introduction – LSS 2

• Parallel simulation
environment
• Real CDMS
• Other on-board equipments

• Behavior simulated on PC
• Based on XML models

• Communication: via Real-time
Message Handlers (embedded
processors)

• High level of autonomy and long lifetime introduces new
requirements
• Knowledge preservation
• Training of the operator staff
• Testing schedules
• SW/HW modules
• Event reproduction
• …

• Solution: Lander
Software Simulator (LSS)

Introduction – Obstanovka
• PWC: ISS Russian segment
• 11 scientific subsystems
• Our responsibility: Distributed

acquisition and control
system
– 3 embedded units (HW-SW)
– EGSE and control interface

 Continuously changing
specification of the scientific
equipments and requirements

 Running test-cases without
the full set of subsystems

Identified problems
• On-board systems

• Distributed systems developed parallel
• Long term missions often operates “out of the reach”

• Autonomous and reactive behavior
• Limited resources (computational capacity, storage, communication,

power, …)
• Robustness and fault tolerance has to be ensured
• Changing specifications over time

• Requirements
• Modular and scalable testing environment for the whole life-cycle

of the mission
• Rapid integration of concepts and specifications
• Simulation even in early phase of life-cycle where HW not

available

Simulation framework
• Based on the above problems we elaborated

a conceptual simulation framework
• Architecture: five different layers

• Each layer has its own well-defined
functionality

• Each layer has a unified and fixed interface to
its neighbors

• Fixed data structures
• Internal implementation of a layer is

flexible
 Desired benefits of using layer based architecture:

• Simplifies the implementation by reducing the
number of aspects

• Simulation of a layer and the real
implementation of it is interchangeable

• The core of the simulation is based on a well
defined modeling language (DSML)

Our framework – Presentation and control
• Front-end of the simulator
• Provides access to internal states of the

units and communication entities
– Interface monitoring + HK in case of using

real unit implementation
– Fully available internal states in case of

simulated unit
• Controls the simulation

– Allows direct user controls
– Automated test/simulation sequences by

pre-stored scenarios
• Connected to:

– Unit interface via control network
– Unit interface monitoring via 'on-board'

network
– In case of simulating the unit: direct access

to the simulator layer

Our framework – Behavior simulation
• Encapsulates the unit behavior

dependent methods
• Platform independently performs the

simulation based on the functional
model of the on-board unit

– Independent of on-board
communication interfaces

– Independent of target platform
– Independent of timing
– Pre-defined level of abstraction
– DSML

• The only layer which depends on the
functionality of the real experiment /
subsystem

• Available component:
– Discrete event simulation (DES)

Our framework – Behavior simulation – DSML 1

• Well-defined and suitable
modeling language
– Well-defined language syntax
– Formalized semantic definition

for the language elements
– Enables using of formal methods

for model checking and
automation

• Validation & verification
• Test sequence generation

– Dedicated for the modeling of on-
board systems on the proper
level of abstraction

Our framework – Behavior simulation – DSML 2
• Dedicated for the modeling of

on-board systems on the proper
level of abstraction

– Functional simulation of
the unit:

• State based description
of reactive systems

• Inter state behavior
description

– Interface level description
• Focus on communication

sequences
• Graphical notation
• OCL constraints to meet the restrictions

– Diversification between nominal
and non-nominal states

– Fault tolerance evaluation

Our framework – Message broker
• Derived from message queues of

the DES concept
• Detach the proper timing

requirements from both the upper
and underlying layers

• Logical timing: Maintains the
causality order of the message
instances

• Real-time operation: Performs
the platform dependent timing of
the communication

• Except the low level timing
constrains of the physical
interface

• Possible message transformation

Our framework – Interface simulation
• Upper part:

• Message broker client
• Transforms the unified internal structures into

real communication dependent message
entities

• Lower part:
• Different on-board equipments are connected

via the internal interface
• Logical

• General data communication network (like
Ethernet)

• Transparent
• Physical

• Real on-board communication interface
• Commercial interfaces like CAN, SpaceWire,

MIL-STD-1553, …
• Dedicated interface (unique control signals)

should be supported
• Environment related data can be injected via

the external interface
• Control and monitoring: simulation network

Our framework – Physical layer
• Two implementation of the on-board network:

• Physical
• Connects the different on-board

equipments
• Contains exactly the same data and

control
busses and dedicated signals as the
on-board system

• Identical signal and timing conditions
as the on-board system

• Logical
• Provides a transparent tunnel over a

common communication infrastructure
(like Internet)

• Simulation network
• Connects the units to the control and

presentation layer

Use-cases 1
• The simulation layer along with the message broker

and interface simulation layer can be used as a
stand alone unit simulator

• From bottom-up the layers can be interchangeable
with the real implementation as the development
proceeds

• Early phase:
• No HW available
• Transparent interface layer over a public network
• Formalizing the specifications by modeling
• Outcome:

• Check the fundamental concepts in early
phase

• Collaboration of different on-board units
• Measuring the load on the communication

interface

Use-cases 2
• Mid phase:

• The on-board communication
infrastructure is already defined

• The interface simulator can be selected
or has been implemented

• On-board equipments interface model
can be presented based on the earlier
implemented behavior model

• Hybrid simulation can be performed:
• Both interface models and real unit

implementations are present
• Collaboration testing
• Unit testing

Use-cases 3

• Later phase:
• The whole system can be

simulated based either on
models or real implementations
of the units

• Test sequences can be
evaluated

• Scientific scenarios can be
tested

• Teaching of the operational staff

Visionary use-cases

• Automatic verification of the
implemented unit against its
formal specification

• Automatic code generation
based on the formal
specification

Conclusion

 Modular and scalable simulation
framework has been presented

 Covers the whole lifecycle of an on-board
equipment

 Already implemented parts
– DSML and functional simulation

 A lot of work ahead

Thank you for your attention !

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Introduction – Obstanovka
	Slide Number 6
	Slide Number 7
	Our framework – Presentation and control
	Our framework – Behavior simulation
	Our framework – Behavior simulation – DSML 1
	Our framework – Behavior simulation – DSML 2
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Conclusion
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

