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Introduction – About us 
• Wigner institute of the Hungarian Academy of Sciences 

and Space and Ground Facilities Ltd. 
• Few decades on the field of space system research 

• Development of EGSEs and on-board equipments 
• From our point of view space systems we are currently focusing 

on can be characterized as the following 
• Distributed reactive autonomous 
• Embedded, fault tolerant and highly reliable 
• Limited resources 

• Participated in many missions 



Introduction – LSS 1 

• Philae 
• Our task: CDMS 

• Central computer of a 
distributed system 

• 6 subsystems, 9 scientific 
modules 

• Long term mission, reduced 
maintainability 

• Training operation staff 
• Robustness, fault tolerance 

• Limited resources 
 

 

• ESA approved the 
ROSETTA mission 
in 1993 

• Comet 
observation 
• Orbiter + Lander 
• Long-term mission 



Introduction – LSS 2 

• Parallel simulation 
environment 
• Real CDMS 
• Other on-board equipments 

• Behavior simulated on PC 
• Based on XML models 

• Communication: via Real-time 
Message Handlers (embedded 
processors) 

 

• High level of autonomy and long lifetime introduces new 
requirements 
• Knowledge preservation 
• Training of the operator staff 
• Testing schedules  
• SW/HW modules 
• Event reproduction 
• … 

• Solution: Lander 
Software Simulator (LSS) 



Introduction – Obstanovka 
• PWC: ISS Russian segment 
• 11 scientific subsystems 
• Our responsibility: Distributed 

acquisition and control 
system 
– 3 embedded units (HW-SW) 
– EGSE and control interface 

 Continuously changing 
specification of the scientific 
equipments and requirements 

 Running test-cases without 
the full set of subsystems 



Identified problems 
• On-board systems 

• Distributed systems developed parallel 
• Long term missions often operates “out of the reach” 

• Autonomous and reactive behavior 
• Limited resources (computational capacity, storage, communication, 

power, …) 
• Robustness and fault tolerance has to be ensured 
• Changing specifications over time 

• Requirements 
• Modular and scalable testing environment for the whole life-cycle 

of the mission 
• Rapid integration of concepts and specifications 
• Simulation even in early phase of life-cycle where  HW not 

available 



Simulation framework 
• Based on the above problems we elaborated 

a conceptual simulation framework 
• Architecture: five different layers 

• Each layer has its own well-defined 
functionality 

• Each layer has a unified and fixed interface to 
its neighbors 

• Fixed data structures 
• Internal implementation of a layer is 

flexible 
 Desired benefits of using layer based architecture: 

• Simplifies the implementation by reducing the 
number of aspects 

• Simulation of a layer and the real 
implementation of it is interchangeable 

• The core of the simulation is based on a well 
defined modeling language (DSML) 

 



Our framework – Presentation and control 
• Front-end of the simulator 
• Provides access to internal states of the 

units and communication entities 
– Interface monitoring + HK in case of using 

real unit implementation 
– Fully available internal states in case of 

simulated unit 
• Controls the simulation 

– Allows direct user controls 
– Automated test/simulation sequences by 

pre-stored scenarios 
• Connected to: 

– Unit interface via control network 
– Unit interface monitoring via 'on-board' 

network 
– In case of simulating the unit: direct access 

to the simulator layer 



Our framework – Behavior simulation 
• Encapsulates the unit behavior 

dependent methods 
• Platform independently performs the 

simulation based on the functional 
model of the on-board unit 

– Independent of on-board 
communication interfaces 

– Independent of target platform 
– Independent of timing 
– Pre-defined level of abstraction 
– DSML 

• The only layer which depends on the 
functionality of the real experiment / 
subsystem 

• Available component: 
– Discrete event simulation (DES) 



Our framework – Behavior simulation – DSML 1 

• Well-defined and suitable 
modeling language 
– Well-defined language syntax  
– Formalized semantic definition 

for the language elements 
– Enables using of formal methods 

for model checking and 
automation  

• Validation & verification 
• Test sequence generation 

– Dedicated for the modeling of on-
board systems on the proper 
level of abstraction 

 



Our framework – Behavior simulation – DSML 2 
• Dedicated for the modeling of 

on-board systems on the proper 
level of abstraction 

– Functional simulation of 
the unit: 

• State based description 
of reactive systems 

• Inter state behavior 
description 

– Interface level description 
• Focus on communication 

sequences 
• Graphical notation 
• OCL constraints to meet the restrictions 

– Diversification between nominal 
and non-nominal states 

– Fault tolerance evaluation 



Our framework – Message broker 
• Derived from message queues of 

the DES concept 
• Detach the proper timing 

requirements from both the upper 
and underlying layers 

• Logical timing: Maintains the 
causality order of the message 
instances 

• Real-time operation: Performs 
the platform dependent timing of 
the communication 

• Except the low level timing 
constrains of the physical 
interface 

• Possible message transformation 



Our framework – Interface simulation 
• Upper part: 

• Message broker client 
• Transforms the unified internal structures into 

real communication dependent message 
entities 

• Lower part: 
• Different on-board equipments are connected 

via the internal interface 
• Logical 

• General data communication network (like 
Ethernet) 

• Transparent 
• Physical 

• Real on-board communication interface 
• Commercial interfaces like CAN, SpaceWire, 

MIL-STD-1553, … 
• Dedicated interface (unique control signals) 

should be supported 
• Environment related data can be injected via 

the external interface 
• Control and monitoring: simulation network 



Our framework – Physical layer 
• Two implementation of the on-board network: 

• Physical 
• Connects the different on-board 

equipments 
• Contains exactly the same data and 

control 
busses and dedicated signals as the 
on-board system 

• Identical signal and timing conditions 
as the on-board system 

• Logical 
• Provides a transparent tunnel over a 

common communication infrastructure 
(like Internet) 

• Simulation network 
• Connects the units to the control and 

presentation layer 
 



Use-cases 1 
• The simulation layer along with the message broker 

and interface simulation layer can be used as a 
stand alone unit simulator 

• From bottom-up the layers can be interchangeable 
with the real implementation as the development 
proceeds 

• Early phase: 
• No HW available 
• Transparent interface layer over a public network 
• Formalizing the specifications by modeling 
• Outcome: 

• Check the fundamental concepts in early 
phase 

• Collaboration of different on-board units 
• Measuring the load on the communication 

interface 

 



Use-cases 2 
• Mid phase: 

• The on-board communication 
infrastructure is already defined 

• The interface simulator can be selected 
or has been implemented 

• On-board equipments interface model 
can be presented based on the earlier 
implemented behavior model 

• Hybrid simulation can be performed: 
• Both interface models and real unit 

implementations are present 
• Collaboration testing 
• Unit testing 



Use-cases 3 

• Later phase: 
• The whole system can be 

simulated based either on 
models or real implementations 
of the units 

• Test sequences can be 
evaluated 

• Scientific scenarios can be 
tested 

• Teaching of the operational staff 
 



Visionary use-cases 

• Automatic verification of the 
implemented unit against its 
formal specification 

• Automatic code generation 
based on the formal 
specification 

 



Conclusion 

 Modular and scalable simulation 
framework has been presented 

 Covers the whole lifecycle of an on-board 
equipment 

 Already implemented parts 
– DSML and functional simulation 

 A lot of work ahead 
 



Thank you for your attention ! 
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