

An Introduction to Differential Algebra

Alexander Wittig¹, P. Di Lizia, R. Armellin, et al.²

¹ ESA Advanced Concepts Team (TEC-SF) ² Dinamica SRL, Milan

www.esa.int

European Space Agency

1 Overview

2 Five Views of Differential Algebra

- Algebra of Multivariate Polynomials
- 2 Computer Representation of Functional Analysis
- 3 Automatic Differentiation
- 4 Set Theory and Manifold Representation
- 5 Non-Archimedean Analysis

European Space Agency

Overview

Differential Algebra

- A numerical technique based on algebraic manipulation of polynomials
- Its computer implementation
- Algorithms using this numerical technique with applications in physics, math and engineering.

Various aspects of what we call *Differential Algebra* are known under other names:

- Truncated Polynomial Series Algebra (TPSA)
- Automatic forward differentiation
- Jet Transport

European Space Agency

Alexander Wittig, Advanced Concepts Team (TEC-SF)

< □ > < 同 > < 回 > < 回

European Space Agency

(Incomplete) History of Differential Algebra and similar Techniques

- Introduced in Beam Physics (Berz, 1987) Computation of transfer maps in particle optics
- Extended to Verified Numerics (Berz and Makino, 1996) Rigorous numerical treatment including truncation and round-off errors for computer assisted proofs
- Taylor Integrator (Jorba et al., 2005)
 Numerical integration scheme based on arbitrary order expansions
- Applications to Celestial Mechanics (Di Lizia, Armellin, 2007) Uncertainty propagation, Two-Point Boundary Value Problem, Optimal Control, Invariant Manifolds...
- Jet Transport (Gomez, Masdemont, et al., 2009) Uncertainty Propagation, Invariant Manifolds, Dynamical Structure

< ロ > < 同 > < 回 > < 回 > < □ > <

Differential Algebra

Differential Algebra

A numerical technique to automatically compute high order Taylor expansions of functions

$$f(\overrightarrow{x_0} + \overrightarrow{\delta x}) \approx f(\overrightarrow{x_0}) + f'(\overrightarrow{x_0}) \cdot \overrightarrow{\delta x} + \dots + \frac{1}{n!} f^{(n)}(\overrightarrow{x_0}) \cdot \overrightarrow{\delta x}^{n}$$

and algorithms to manipulate these expansions.

Can be conceptualized in various ways from different view points:

- Multivariate Polynomials
- Functional Analysis
- Set Theory

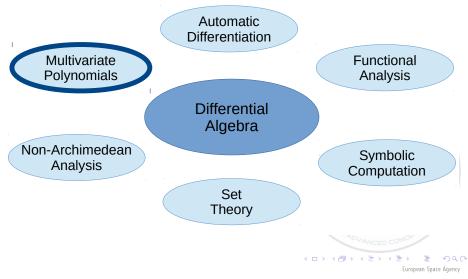
- Automatic Differentiation
- Non-Archimedean Analysis
- (Symbolic Computation)

European Space Agency

Alexander Wittig, Advanced Concepts Team (TEC-SF)

(日)

Multivariate Polynomials



5/28 DA Introduction

Motivation: What does an expression like this mean?

$$r = \frac{x \cdot y + 1}{\sqrt{1 + x^2}}$$

Instructions of basic operations to be performed in a certain order:

1
$$r_1 \leftarrow x \cdot y$$

2 $r_1 \leftarrow r_1 + 1$
3 $r_2 \leftarrow x \cdot x$
4 $r_2 \leftarrow 1 + r_2$
5 $r_2 \leftarrow \sqrt{r_2}$
6 $r \leftarrow r_1/r_2$

Alexander Wittig, Advanced Concepts Team (TEC-SF)

E ▶ ...

European Space Agency

< □ > < 同 >

Multivariate Polynomials: Motivation

European Space Agency

- *x*, *y* can be anything for which basic operations used (e.g. $+, -, \cdot, /, \sqrt{-}, ...$) are defined in "useful" way:
 - Abstract mathematical entities:
 - real number (ℝ)
 matrices (ℝ^{n×n})
 - complex number (C)

- functions (e.g. C^r)
- Computer representations of mathematical entities
 - floating point numbers
 - DA objects

Key idea of DA

Replace all algebraic operations between numbers by ones that act on (a suitably chosen subset of) polynomials instead.

Alexander Wittig, Advanced Concepts Team (TEC-SF)

・ロッ ・雪 ・ ・ ヨ ・ ・

Multivariate Polynomials: Definition

- **1** Ring of polynomials $p(x) = \sum_{i=0} a_i x^i$
 - Natural Addition, Subtraction, Multiplication of polynomials
 - Problems:
 - order of polynomials not limited, grows under multiplication
 - infinite dimensional
 - not well suited for computations

European Space Agency

Multivariate Polynomials: Definition

- **1** Ring of polynomials $p(x) = \sum_{i=0} a_i x^i$
 - Natural Addition, Subtraction, Multiplication of polynomials
 - Problems:
 - order of polynomials not limited, grows under multiplication
 - infinite dimensional
 - not well suited for computations
- 2 Algebra of truncated polynomials $p(x) = \sum_{i=0}^{n} a_i x^i$
 - Truncate all results to a fixed order n
 - Finite dimensional space, hence computable
 - Space ${}_{n}D_{v}$ of polynomials of order up to *n* in *v* variables has $\frac{(n+v)!}{n!v!}$ dimensions
 - Not a ring or field: e.g. many nil-potent elements (zero divisors):
 e.g. x, x x²,...

European Space Agency

(日)

Multivariate Polynomials: Intrinsics

Can also introduce *division* and *intrinsic functions* on $_nD_v$.

- Division: $\frac{1}{P} \in {}_nD_v$ such that $P \cdot \frac{1}{P} = 1$
 - Does not always exist: P(x) = x has no multiplicative inverse
 - Exists for all polynomials with non-zero constant part
 - Does not exist in ring of polynomials!
- Other intrinsic functions (e.g. √, sin, cos, exp, ...)
 - can be defined appropriately on $_nD_v$
 - often with similar restrictions as division, or stricter (e.g. $\sqrt{}$)

Multivariate Polynomials: Intrinsics

Can also introduce *division* and *intrinsic functions* on $_nD_v$.

- Division: $\frac{1}{P} \in {}_nD_v$ such that $P \cdot \frac{1}{P} = 1$
 - Does not always exist: P(x) = x has no multiplicative inverse
 - Exists for all polynomials with non-zero constant part
 - Does not exist in ring of polynomials!
- Other intrinsic functions (e.g. √, sin, cos, exp, ...)
 - can be defined appropriately on $_nD_v$
 - often with similar restrictions as division, or stricter (e.g. $\sqrt{}$)

Result

Now we can evaluate expressions such as

$$r = \frac{x \cdot y + 1}{\sqrt{1 + x^2}}$$

in DA arithmetic using polynomials.

European Space Agency

9/28 DA Introduction

Last thing: Add derivation ∂ and inverse derivation ∂^{-1} operators to obtain *differential* algebra.

- ∂_x : Simple polynomial derivation w.r.t. independent variable x
- ► ∂_x^{-1} : Simple polynomial integration w.r.t. independent variable x

Now we can evaluate even complicated operators directly in DA:

$$g(x, y, z) = \int \int \frac{d}{dy} \exp\left(\frac{\sin(x) \cdot \cos(y) + 1}{\sqrt{1 + x^2 + y^2 + z^2}}\right) dx dz$$

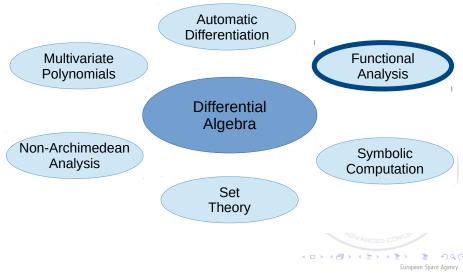
Result: Differential Algebra

Together with the *right* definitions for all these operations, we extended the basic polynomial algebra to the Differential Algebra (DA).

European Space Agency

ヘロン 人間 とくほ とくほ とう

Differential Algebra



Alexander Wittig, Advanced Concepts Team (TEC-SF)

Floating Point Arithmetic

Taking a step back

 $\mathbb R$ is infinite. How does arithmetic on $\mathbb R$ get into the computer?

Answer: floating point numbers (\mathbb{F})

 $x = \pm m \cdot 2^e$

- Mantissa m and exponent e are integers in some range
- Approximate representation of real numbers R
 - mantissa represents the "most significant digits"
 - exponent represents the "magnitude"

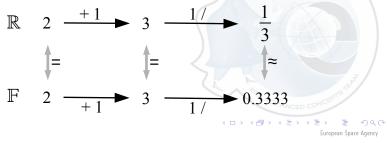
European Space Agency

In ${\mathbb R}$ and hypothetical ${\mathbb F}$ with 4 significant decimal digits, evaluate

$$\frac{1}{x+1}$$
 for $x=2$.

List of operations:

- start with x = 2
- perform +1 operation
- perform 1/ operation



Functional Analysis on Computers

Idea:

Use Taylor Expansions around 0 as approximate computer representations of functions in $C^{r}(0)$ function space.

- ► Each function f ∈ C^r(0) is represented by a Taylor Expansion T_f of order r.
- *T_f* approximates *f* just like floating point numbers F approximate real numbers R

Alexander Wittig, Advanced Concepts Team (TEC-SF)

< ロ > < 同 > < 回 > < 国 > < 国 > < 国

Functional Analysis on Computers

Idea:

Use Taylor Expansions around 0 as approximate computer representations of functions in $C^{r}(0)$ function space.

- ► Each function f ∈ C^r(0) is represented by a Taylor Expansion T_f of order r.
- *T_f* approximates *f* just like floating point numbers F approximate real numbers R

Example for n = 3

$$f(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$$
 $g(x) = \exp(x)$ $h(x) = \exp(x) + x^3 \cdot \sin(x)$

All three functions f, g, and h are represented by f(x).

European Space Agency

Alexander Wittig, Advanced Concepts Team (TEC-SF)

Just as for floating point numbers, DA operations are defined to "approximate" operations in C^r :

▶ Binary operators \times and DA equivalent \otimes (e.g. +, -, ·, /)

$$\mathcal{T}_f(x)\otimes\mathcal{T}_g(x)=\mathcal{T}_{f imes g}(x)$$

▶ Intrinsic functions g(x) and DA equivalent G(x) (e.g. sin, cos)

$$G(\mathcal{T}_f(x)) = \mathcal{T}_{g(f(x))}.$$

where $T_f(x)$ is Taylor expansion of f around 0 up to fixed order n.

European Space Agency

< □ > < 同 > < 回 > <

Just as for floating point numbers, DA operations are defined to "approximate" operations in C^r :

▶ Binary operators \times and DA equivalent \otimes (e.g. +, -, ·, /)

$$\mathcal{T}_f(x)\otimes\mathcal{T}_g(x)=\mathcal{T}_{f imes g}(x)$$

▶ Intrinsic functions g(x) and DA equivalent G(x) (e.g. sin, cos)

$$G(\mathcal{T}_f(x)) = \mathcal{T}_{g(f(x))}.$$

where $T_f(x)$ is Taylor expansion of *f* around 0 up to fixed order *n*.

How is it done?

Don't worry about the *how* this is implemented, just accept it *is* implemented correctly for you by someone (=us)! You also accepted that there exist algorithms to compute $1/3 \approx 0.3333$.

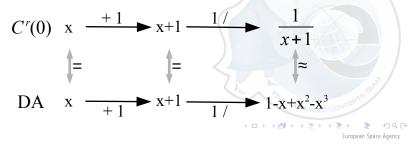
European Space Agency

Functional Analysis: Example

In $C^{3}(0)$ and 3rd order DA, evaluate

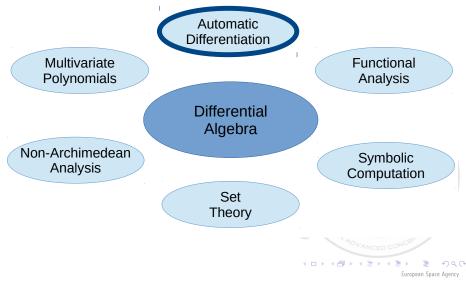
List of operations:

- start with the identity x = x
- perform +1 operation
- perform 1/ operation



 $\overline{x+1}$.

Automatic Differentiation



17/28 DA Introduction

European Space Agency

Let $\vec{x}_0 \in \mathbb{R}^m$, $f : \mathbb{R}^m \to \mathbb{R}$ and compute the derivatives

for any given order k at the point \vec{x}_0 .

Automatic differentiation:

- Concerned with accurate computation of arbitrary derivatives of a function *f* at given point x₀
- Algorithms that are much faster and more accurate than e.g. divided differences
- DA is a specific instance of a forward differentiation method

< □ > < 同 > < 回 > <

DA as Automatic Differentiation

European Space Agency

Given $\vec{x}_0 \in \mathbb{R}^m$, $f : \mathbb{R}^m \to \mathbb{R}$, compute

$$P(\vec{x}) = f(\vec{x}_0 + \vec{x})$$

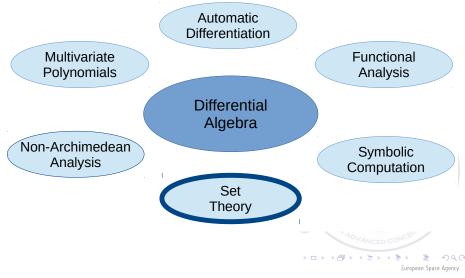
to some order in DA arithmetic.

- ► Then $P(\vec{x})$ is Taylor Expansion of *f* around \vec{x}_0 by the way we defined each operation.
- Contains *exact* derivatives $\frac{d^k f}{d\vec{x}^k}\Big|_{\vec{x}_0}$ in coefficients (up to floating point error, typically ~ 10⁻¹⁵).
- Coefficients can be extracted by repeated application of differentiation operator ∂_i followed by extraction of constant part.

Alexander Wittig, Advanced Concepts Team (TEC-SF)

(日)

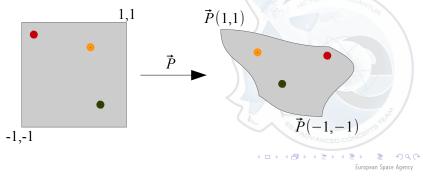
Sets and Manifolds



Sets and Manifolds

DA objects can be considered as representation of very general sets:

- Consider DA as a (structured) set by looking at image of domain [-1, 1]ⁿ under a polynomial map
- Can approximate very complicated sets very well
- Much better approximation of set valued functions than Interval Arithmetic



Sets and Manifolds

Set theoretical view of DA allows:

- easy representation of and computation on complicated sets
- fast propagation of sets of points (by one single function evaluation)
- accurate bounding of resulting sets

DA representation of sets has structure \Rightarrow Manifolds

- Instead of one single map, consider many maps each covering a small part of the manifold (⇒ Domain Splitting)
- Natural computer representation of the mathematical concept of a manifold by representing the charts of the atlas as DA objects
- Calculations on a manifold straight forward

European Space Agency

< □ > < 同 > < 回 > <

European Space Agency

Alexander Wittig, Advanced Concepts Team (TEC-SF)

< □ > < 同 > < 回 > < 回

- Extension of DA techniques to automatically compute rigorous bounds of truncation errors
 - DA: $f(\overrightarrow{x_{0}} + \overrightarrow{\delta x}) \approx f(\overrightarrow{x_{0}}) + f'(\overrightarrow{x_{0}}) \cdot \overrightarrow{\delta x} + \dots + \frac{1}{n!} f^{(n)}(\overrightarrow{x_{0}}) \cdot \overrightarrow{\delta x}^{n}$ TM: $f(\overrightarrow{x_{0}} + \overrightarrow{\delta x}) \in f(\overrightarrow{x_{0}}) + f'(\overrightarrow{x_{0}}) \cdot \overrightarrow{\delta x} + \dots + \frac{1}{n!} f^{(n)}(\overrightarrow{x_{0}}) \cdot \overrightarrow{\delta x}^{n} + [-\varepsilon, \varepsilon]$
- Combined with *polynomial bounders* provides highly accurate, rigorous bounds for range of *f* over given domains.

Applications in verified numerics:

- Global Optimization
- Global Fixed Point Finder

- Verified Integration
- Manifold Enclosures

 \implies Computer Assisted Proofs

Taylor Models

European Space Agency

Several methods to compute flow expansion $\varphi(\vec{x}_0, t)$:

- Arbitrary order time expansion by DA Picard iteration
- DA evaluation of classical numerical schemes
 - Runge Kutta (e.g. RK45, DP78)
 - Adams-Bashforth
- Never: variational equations!

Result of each method:

$$P(\delta \vec{x}, \delta t) = \varphi(\vec{x}_0 + \delta \vec{x}, t + \delta t)$$

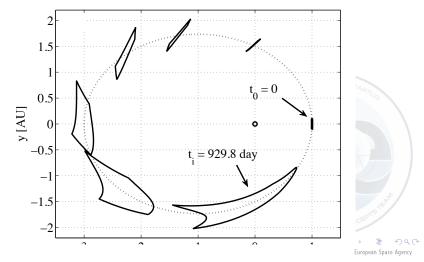
- First order of P corresponds to state transition matrix
- Extremely useful to propagate entire sets of initial conditions

Alexander Wittig, Advanced Concepts Team (TEC-SF)

< □ > < 同 > < 回 > < 回

ODE flow expansion

Propagation of set of initial conditions in Kepler dynamics (set view):



25/28 DA Introduction

ODE flow expansion

Advanced set propagation techniques:

Domain Splitting: nonlinear dynamics cause sets to grow. Automatically decompose polynomial into smaller polynomials covering subsets to ensure convergence.

Taylor integrator: arbitrary order integrator using the Taylor flow expansion.

Instead of numerical scheme, use Taylor flow expansion and compute and evaluate at each time step.

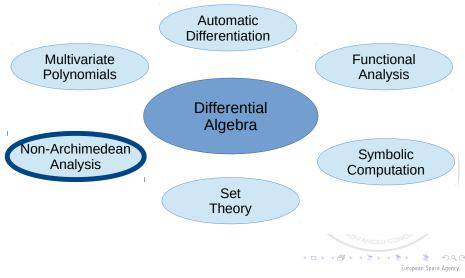
Verified integration: Taylor integrator extended with verified Taylor Models.

Computes verified enclosure of flow including truncation and round-off errors in each step.

Yields verified enclosure of set (computer assisted proof).

< ロ > < 同 > < 回 > < 回 > < □ > <

Non-Archimedean Analysis



Non-Archimedean Analysis

Axiom of Archimedes

$$\forall \varepsilon > \mathbf{0} \; \exists n \in \mathbb{N} \; \text{s.t.} \; \mathbf{1}/n < \varepsilon$$

"every positive ε can be multiplied by some *n* such that $\varepsilon \cdot n$ is larger than 1"

Non-Archimedean Analysis: Drop axiom to allow infinitesimals

- \Rightarrow The Levi-Civita Field
 - Rigorous mathematical treatment of algebra with infinitesimals
 - Provides rigorous theoretical underpinning for DA
 - Useful to develop fast implementations of the computation of basic DA algorithms
 - contracting operators: number of correct orders increases by 1
 - super-convergent operators: number of correct orders doubles

European Space Agency

Alexander Wittig, Advanced Concepts Team (TEC-SF)

< ロ > < 同 > < 回 > < 回 > < □ > <

An Introduction to Differential Algebra

Alexander Wittig¹, P. Di Lizia, R. Armellin, et al.²

¹ ESA Advanced Concepts Team (TEC-SF) ² Dinamica SRL, Milan

www.esa.int

European Space Agency