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Overview

Differential Algebra

I A numerical technique based on algebraic manipulation of
polynomials

I Its computer implementation
I Algorithms using this numerical technique with applications in

physics, math and engineering.

Various aspects of what we call Differential Algebra are known under
other names:

I Truncated Polynomial Series Algebra (TPSA)
I Automatic forward differentiation
I Jet Transport
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History of Differential Algebra

(Incomplete) History of Differential Algebra and similar Techniques
I Introduced in Beam Physics (Berz, 1987)

Computation of transfer maps in particle optics
I Extended to Verified Numerics (Berz and Makino, 1996)

Rigorous numerical treatment including truncation and round-off errors
for computer assisted proofs

I Taylor Integrator (Jorba et al., 2005)
Numerical integration scheme based on arbitrary order expansions

I Applications to Celestial Mechanics (Di Lizia, Armellin, 2007)
Uncertainty propagation, Two-Point Boundary Value Problem, Optimal
Control, Invariant Manifolds...

I Jet Transport (Gomez, Masdemont, et al., 2009)
Uncertainty Propagation, Invariant Manifolds, Dynamical Structure
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Differential Algebra

Differential Algebra

A numerical technique to automatically compute high order Taylor
expansions of functions

f (−→x0 +
−→
δx) ≈f (−→x0) + f ′(−→x0) ·

−→
δx + · · ·+ 1

n! f
(n)(
−→x0) ·

−→
δx n

and algorithms to manipulate these expansions.

Can be conceptualized in various ways from different view points:

I Multivariate Polynomials
I Functional Analysis
I Set Theory

I Automatic Differentiation
I Non-Archimedean Analysis
I (Symbolic Computation)

4/28 DA Introduction Alexander Wittig, Advanced Concepts Team (TEC-SF)



2

Multivariate Polynomials

Differential
Algebra

Multivariate
Polynomials

Automatic
Differentiation

Functional
Analysis

Non-Archimedean
Analysis

Set
Theory

Symbolic
Computation

5/28 DA Introduction Alexander Wittig, Advanced Concepts Team (TEC-SF)



2

Multivariate Polynomials: Motivation

Motivation: What does an expression like this mean?

r =
x · y + 1√

1 + x2

I Instructions of basic operations to be performed in a certain order:

1 r1 ← x · y
2 r1 ← r1 + 1
3 r2 ← x · x
4 r2 ← 1 + r2
5 r2 ←

√
r2

6 r ← r1/r2
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Multivariate Polynomials: Motivation

x , y can be anything for which basic operations used (e.g.
+,−, ·, /,√ , . . . ) are defined in “useful” way:

I Abstract mathematical entities:

� real number (R)

� complex number (C)

� matrices (Rn×n)

� functions (e.g. Cr )

I Computer representations of mathematical entities
� floating point numbers
� DA objects

Key idea of DA

Replace all algebraic operations between numbers by ones that act on
(a suitably chosen subset of) polynomials instead.
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Multivariate Polynomials: Definition

1 Ring of polynomials p(x) =
∑

i=0 aix i

� Natural Addition, Subtraction, Multiplication of polynomials
� Problems:

• order of polynomials not limited, grows under multiplication
• infinite dimensional
• not well suited for computations

2 Algebra of truncated polynomials p(x) =
∑n

i=0 aix i

� Truncate all results to a fixed order n
� Finite dimensional space, hence computable
� Space nDv of polynomials of order up to n in v variables

has (n+v)!
n!v ! dimensions

� Not a ring or field: e.g. many nil-potent elements (zero divisors):
e.g. x , x − x2, . . .
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Multivariate Polynomials: Intrinsics

Can also introduce division and intrinsic functions on nDv .
I Division: 1

P ∈ nDv such that P · 1
P = 1

� Does not always exist: P(x) = x has no multiplicative inverse
� Exists for all polynomials with non-zero constant part
� Does not exist in ring of polynomials!

I Other intrinsic functions (e.g. √ , sin, cos, exp, ...)
� can be defined appropriately on nDv
� often with similar restrictions as division, or stricter (e.g. √ )

Result
Now we can evaluate expressions such as

r =
x · y + 1√

1 + x2

in DA arithmetic using polynomials.
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Multivariate Polynomials: Differential Structure

Last thing: Add derivation ∂ and inverse derivation ∂−1 operators to
obtain differential algebra.

I ∂x : Simple polynomial derivation w.r.t. independent variable x
I ∂−1

x : Simple polynomial integration w.r.t. independent variable x

Now we can evaluate even complicated operators directly in DA:

g(x , y , z) =
ˆ ˆ

d
dy

exp

(
sin(x) · cos(y) + 1√

1 + x2 + y2 + z2

)
dx dz

Result: Differential Algebra

Together with the right definitions for all these operations, we extended
the basic polynomial algebra to the Differential Algebra (DA).
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Floating Point Arithmetic

Taking a step back

R is infinite. How does arithmetic on R get into the computer?

Answer: floating point numbers (F)

x = ±m · 2e

I Mantissa m and exponent e are integers in some range
I Approximate representation of real numbers R

� mantissa represents the “most significant digits”
� exponent represents the “magnitude”

I All algebraic operations on F defined to “approximate” the
corresponding real operation on R
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Floating Point Arithmetic: Example

In R and hypothetical F with 4 significant decimal digits, evaluate

1
x + 1

for x = 2.

List of operations:
I start with x = 2
I perform +1 operation
I perform 1/ operation

2
+ 1   

3
1 /  1

3

2 3
1 /  

0.3333

�
⇥

+ 1  

= ≈=

13/28 DA Introduction Alexander Wittig, Advanced Concepts Team (TEC-SF)



2

Functional Analysis on Computers

Idea:

Use Taylor Expansions around 0 as approximate computer
representations of functions in Cr (0) function space.

I Each function f ∈ Cr (0) is represented by a Taylor Expansion Tf of
order r .

I Tf approximates f just like floating point numbers F approximate
real numbers R

Example for n = 3

f (x) = 1+ x + x2

2 + x3

6 g(x) = exp(x) h(x) = exp(x)+ x3 · sin(x)

All three functions f , g, and h are represented by f (x).
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Functional Analysis on Computers

Just as for floating point numbers, DA operations are defined to
“approximate” operations in Cr :

I Binary operators × and DA equivalent ⊗ (e.g. +,−, ·, /)

Tf (x)⊗ Tg(x) = Tf×g(x)

I Intrinsic functions g(x) and DA equivalent G(x) (e.g. sin, cos)

G(Tf (x)) = Tg(f (x)).

where Tf (x) is Taylor expansion of f around 0 up to fixed order n.

How is it done?

Don’t worry about the how this is implemented, just accept it is
implemented correctly for you by someone (=us)!
You also accepted that there exist algorithms to compute 1/3 ≈ 0.3333.
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Functional Analysis: Example

In C3(0) and 3rd order DA, evaluate

1
x + 1

.

List of operations:
I start with the identity x = x
I perform +1 operation
I perform 1/ operation

x
+ 1   

x+1
1 /  1

x+1

x
1 /  

1-x+x2-x3

C 
r(0)

DA
+ 1  

x+1

= ≈=
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Automatic Differentiation
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Automatic Differentiation

Let ~x0 ∈ Rm, f : Rm → R and compute the derivatives

dk f
d~xk

∣∣∣∣
~x0

for any given order k at the point ~x0.

Automatic differentiation:
I Concerned with accurate computation of arbitrary derivatives of a

function f at given point x0

I Algorithms that are much faster and more accurate than e.g.
divided differences

I DA is a specific instance of a forward differentiation method
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DA as Automatic Differentiation

Given ~x0 ∈ Rm, f : Rm → R, compute

P(~x) = f (~x0 + ~x)

to some order in DA arithmetic.

I Then P(~x) is Taylor Expansion of f around ~x0 by the way we
defined each operation.

I Contains exact derivatives dk f
d~xk

∣∣∣
~x0

in coefficients (up to floating

point error, typically ∼ 10−15).
I Coefficients can be extracted by repeated application of

differentiation operator ∂i followed by extraction of constant part.
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Sets and Manifolds

DA objects can be considered as representation of very general sets:
I Consider DA as a (structured) set by looking at image of domain [−1,1]n

under a polynomial map
I Can approximate very complicated sets very well
I Much better approximation of set valued functions than Interval

Arithmetic

-1,-1

1,1 P⃗ (1,1)

P⃗ (−1,−1)

P⃗
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Sets and Manifolds

Set theoretical view of DA allows:
I easy representation of and computation on complicated sets
I fast propagation of sets of points (by one single function evaluation)
I accurate bounding of resulting sets

DA representation of sets has structure ⇒ Manifolds
I Instead of one single map, consider many maps each covering a

small part of the manifold (⇒ Domain Splitting)
I Natural computer representation of the mathematical concept of a

manifold by representing the charts of the atlas as DA objects
I Calculations on a manifold straight forward
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Taylor Models

I Extension of DA techniques to automatically compute rigorous
bounds of truncation errors

� DA:
f (−→x0 +

−→
δx) ≈f (−→x0) + f ′(−→x0) ·

−→
δx + · · ·+ 1

n! f
(n)(
−→x0) ·

−→
δx n

� TM:
f (−→x0 +

−→
δx) ∈f (−→x0) + f ′(−→x0) ·

−→
δx + · · ·+ 1

n! f
(n)(
−→x0) ·

−→
δx n+[−ε, ε]

I Combined with polynomial bounders provides highly accurate,
rigorous bounds for range of f over given domains.

Applications in verified numerics:

I Global Optimization
I Global Fixed Point Finder

I Verified Integration
I Manifold Enclosures

=⇒ Computer Assisted Proofs
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ODE flow expansion

Several methods to compute flow expansion ϕ(~x0, t):
I Arbitrary order time expansion by DA Picard iteration
I DA evaluation of classical numerical schemes

� Runge Kutta (e.g. RK45, DP78)
� Adams-Bashforth

I Never: variational equations!
Result of each method:

P(δ~x , δt) = ϕ(~x0 + δ~x , t + δt)

I First order of P corresponds to state transition matrix
I Extremely useful to propagate entire sets of initial conditions
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ODE flow expansion

Propagation of set of initial conditions in Kepler dynamics (set view):

2nd IAA DyCoSS

ï3 ï2 ï1 0 1
ï2

ï1.5

ï1

ï0.5

0

0.5

1

1.5

2

x [AU]

y 
[A

U
]

(a)

t0 = 0

ti = 929.8 day

‣ Main settings!
• Eccentricity: 0.5 - Starting point: pericenter!
• Integration scheme: Runge-Kutta (variable step, order 8)!
• DA-based ODE flow expansion order: 6

‣ Uncertainty box on initial position: 0.008 AU in     and 0.08 AU in x

y

• Any sample in the uncertainty box 
can be propagated using the 6th 
order polynomial

Fast Monte Carlo simulations

• Computational time: 0.15 s (2.4 GHz 
Intel Core i5)

DA integration of Kepler Dynamics
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ODE flow expansion

Advanced set propagation techniques:
Domain Splitting: nonlinear dynamics cause sets to grow.

Automatically decompose polynomial into smaller
polynomials covering subsets to ensure convergence.

Taylor integrator: arbitrary order integrator using the Taylor flow
expansion.
Instead of numerical scheme, use Taylor flow expansion
and compute and evaluate at each time step.

Verified integration: Taylor integrator extended with verified Taylor
Models.
Computes verified enclosure of flow including truncation
and round-off errors in each step.
Yields verified enclosure of set (computer assisted proof).
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Non-Archimedean Analysis

Axiom of Archimedes

∀ε > 0 ∃n ∈ N s.t. 1/n < ε

“every positive ε can be multiplied by some n such that ε · n is larger than 1”

Non-Archimedean Analysis: Drop axiom to allow infinitesimals
⇒ The Levi-Civita Field

I Rigorous mathematical treatment of algebra with infinitesimals
I Provides rigorous theoretical underpinning for DA
I Useful to develop fast implementations of the computation of basic

DA algorithms
� contracting operators: number of correct orders increases by 1
� super-convergent operators: number of correct orders doubles
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