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Differential Algebra

» A numerical technique based on algebraic manipulation of
polynomials

> Its computer implementation

» Algorithms using this numerical technique with applications in
physics, math and engineering.

Various aspects of what we call Differential Algebra are known under
other names:

» Truncated Polynomial Series Algebra (TPSA)
» Automatic forward differentiation
» Jet Transport
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(Incomplete) History of Differential Algebra and similar Techniques

>
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Introduced in Beam Physics (Berz, 1987)
Computation of transfer maps in particle optics

Extended to Verified Numerics (Berz and Makino, 1996)
Rigorous numerical treatment including truncation and round-off errors
for computer assisted proofs

Taylor Integrator (Jorba et al., 2005)
Numerical integration scheme based on arbitrary order expansions

Applications to Celestial Mechanics (Di Lizia, Armellin, 2007)
Uncertainty propagation, Two-Point Boundary Value Problem, Optimal
Control, Invariant Manifolds...

Jet Transport (Gomez, Masdemont, et al., 2009)
Uncertainty Propagation, Invariant Manifolds, Dynamical Structure
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Differential Algebra

A numerical technique to automatically compute high order Taylor
expansions of functions

(36 + %) ~F(8) + F(36) -0 + -+ HHD(R) - 3%

and algorithms to manipulate these expansions.
Can be conceptualized in various ways from different view points:

» Multivariate Polynomials > Automatic Differentiation

» Functional Analysis > Non-Archimedean Analysis
> (Symbolic Computation)

» Set Theory
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Multivariate Polynomials: Motivation

Motivation: What does an expression like this mean?

;o x-y+1
V1 + x2
» Instructions of basic operations to be performed in a certain order:
n+«<x-y
rn+<n+1
L+ X-X
rh+1+n
ry < /T2
Br«n/n

o = - = = 9ace
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+, = /,\/s---) are defined in “useful” way:
» Abstract mathematical entities:

m real number (R) m matrices (R"*")
m complex number (C) m functions (e.g. C")

» Computer representations of mathematical entities

m floating point numbers
m DA objects

Key idea of DA

Replace all algebraic operations between numbers by ones that act on
(a suitably chosen subset of) polynomials instead.
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Multivariate Polynomials: Definition

= Problems:

Ring of polynomials p(x) = >";_o aix’

(s
dcesa
m Natural Addition, Subtraction, Multiplication of polynomials

e infinite dimensional

e order of polynomials not limited, grows under multiplication
e not well suited for computations
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Ring of polynomials p(x) = >";_o aix’

= Natural Addition, Subtraction, Multiplication of polynomials
m Problems:

e order of polynomials not limited, grows under multiplication
e infinite dimensional

e not well suited for computations

Algebra of truncated polynomials p(x) = >_7_, a;x’

8/28

m Truncate all results to a fixed order n

m Finite dimensional space, hence computable

m Space D, of polynomials of order up to nin v variables
has ! dimensions

m Not a ring or field: e.g. many nil-potent elements (zero divisors):
e.g. X,x —x2,...

[m] = = =
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Multivariate Polynomials: Intrinsics

» Division: 5 € ,D, suchthat P- 5 = 1

Can also introduce division and intrinsic functions on ,D,,.

m Does not always exist: P(x) = x has no multiplicative inverse
m Does not exist in ring of polynomials!

m Exists for all polynomials with non-zero constant part

» Other intrinsic functions (e.g. ,/, sin, cos, exp,
m can be defined appropriately on ,D,

)

= often with similar restrictions as division, or stricter (e.g. ,/)
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Can also introduce division and intrinsic functions on ,D,.
» Division: 5 € ,D, suchthat P- 5 = 1
m Does not always exist: P(x) = x has no multiplicative inverse
m Exists for all polynomials with non-zero constant part
m Does not exist in ring of polynomials!

» Other intrinsic functions (e.g. NE sin, cos, exp, ...)

m can be defined appropriately on ,D,
= often with similar restrictions as division, or stricter (e.g. ,/)

Now we can evaluate expressions such as

r:xoy+1

N

in DA arithmetic using polynomials.
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Last thing: Add derivation 9 and inverse derivation 9~ operators to
obtain differential algebra.

> Ox: Simple polynomial derivation w.r.t. independent variable x
» 95 ': Simple polynomial integration w.r.t. independent variable x

Now we can evaluate even complicated operators directly in DA:

sm(x) cos(y) + 1
X, y,z dx dz

Result: Differential Algebra

Together with the right definitions for all these operations, we extended
the basic polynomial algebra to the Differential Algebra (DA).
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Taking a step back

R is infinite. How does arithmetic on R get into the computer?

Answer: floating point numbers (F)

X=4+m-2°

» Mantissa m and exponent e are integers in some range
» Approximate representation of real numbers R

= mantissa represents the “most significant digits”
m exponent represents the “magnitude”

» All algebraic operations on F defined to “approximate” the
corresponding real operation on R
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Floating Point Arithmetic: Example

In R and hypothetical F with 4 significant decimal digits, evaluate
List of operations:

:esa
1
—— forx=2.
X +1
» start with x =2
» perform +1 operation
» perform 1/ operation

R 2+—1>3

1/ I
F
13/28

1
i
2 +—1> 3 1—/>0.3333
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Analysis on Computers

Use Taylor Expansions around 0 as approximate computer
representations of functions in C"(0) function space.
order r.

» Each function f € C’(0) is represented by a Taylor Expansion 7; of
real numbers R

14/28

» T approximates f just like floating point numbers F approximate
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Use Taylor Expansions around 0 as approximate computer
representations of functions in C’(0) function space.

» Each function f € C’(0) is represented by a Taylor Expansion 7; of
order r.

» T approximates f just like floating point numbers F approximate
real numbers R

Example for n =3

) =T+x+% 12  gx)=exp(x)  h(x) = exp(x) + x*-sin(x)

All three functions f, g, and h are represented by f(x).
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Functional Analysis on Computers

approximate” operations in C':

Just as for floating point numbers, DA operations are defined to

» Binary operators x and DA equivalent ® (e.g. +, —, -, /)
| 4

Ti(x) @ Tg(x) = Tixg(X)
Intrinsic functions g(x) and DA equivalent G(x) (e.g. sin, cos)

G(T¢ (X)) = Ty(r(x))-
where T¢(x) is Taylor expansion of f around 0 up to fixed order n.
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Just as for floating point numbers, DA operations are defined to
“approximate” operations in C":

» Binary operators x and DA equivalent ® (e.g. +, —, -, /)

T(x) @ Tg(X) = Trxg(X)
» Intrinsic functions g(x) and DA equivalent G(x) (e.g. sin, cos)
G(T(x)) = Ty(t(x))-

where T¢(x) is Taylor expansion of f around 0 up to fixed order n.
How is it done?

Don’t worry about the how this is implemented, just accept it is

implemented correctly for you by someone (=us)!
You also accepted that there exist algorithms to compute 1/3 ~ 0.3333.
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Functional Analysis: Example
In C3(0) and 3rd order DA, evaluate

1
x+1
List of operations
» start with the identity x =
» perform +1 operation
» perform 1/ operation

C'(0) x — L x+1

1/
DA

1
—-
+
16/28

x+1
1
DA Introduction
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Automatic Differentiation

Let Xo € R™, f: R™ — R and compute the derivatives
dr
axk %

for any given order k at the point X.

Automatic differentiation:

» Concerned with accurate computation of arbitrary derivatives of a
function f at given point xp

» Algorithms that are much faster and more accurate than e.g.
divided differences

» DA is a specific instance of a forward differentiation method

o« =» «=» = 9Hac
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DA as Automatic Differentiation

Given Xy € R™, f: R™ — R, compute

P(X) = f(% + X)

to some order in DA arithmetic.

» Then P(X) is Taylor Expansion of f around Xo by the way we
defined each operation.

» Contains exact derivatives g—; _ in coefficients (up to floating
Xo
point error, typically ~ 10~19).

» Coefficients can be extracted by repeated application of
differentiation operator 0; followed by extraction of constant part.

=} (=)
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Sets and Manifolds
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Sets and Manifolds

DA objects can be considered as representation of very general sets:

> Consider DA as a (structured) set by looking at image of domain [—1,1]"
under a polynomial map

» Can approximate very complicated sets very well

» Much better approximation of set valued functions than Interval
Arithmetic

L1 P(1,1)

im

1,1

CIRT-= = =, E 9ae
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Set theoretical view of DA allows:

> easy representation of and computation on complicated sets
» fast propagation of sets of points (by one single function evaluation)

» accurate bounding of resulting sets

DA representation of sets has structure = Manifolds

> Instead of one single map, consider many maps each covering a
small part of the manifold ( = Domain Splitting)

» Natural computer representation of the mathematical concept of a
manifold by representing the charts of the atlas as DA objects

» Calculations on a manifold straight forward
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Taylor Models

bounds of truncation errors

» Extension of DA techniques to automatically compute rigorous
m DA;

_)

F(X6 + ox) ~H(30) + F/(0)
m TM:

6X 4 -+ A F)(

ﬁ

X5) - 0X "
F(36 + %) EF(R) + F1(R) - 0X + -+ + HAO(G) - 6% "+ [, ]

» Combined with polynomial bounders provides highly accurate,

rigorous bounds for range of f over given domains.
Applications in verified numerics:

» Global Optimization » Verified Integration
» Global Fixed Point Finder

» Manifold Enclosures
— Computer Assisted Proofs
23/28
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ODE flow expansion

Several methods to compute flow expansion ¢ (X, t):

» Arbitrary order time expansion by DA Picard iteration
» DA evaluation of classical numerical schemes

= Runge Kutta (e.g. RK45, DP78)
m Adams-Bashforth

» Never: variational equations!
Result of each method:

P(6X,0t) = @(Xo + 6X, t + dt)

» First order of P corresponds to state transition matrix

24/28 DA Introduction

» Extremely useful to propagate entire sets of initial conditions
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ODE flow expansion {zesa

Propagation of set of initial conditions in Kepler dynamics (set view):

y [AU]
(e}

t.=929.8 day

~ ~ . ~ « E DA
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Advanced set propagation techniques:

Domain Splitting: nonlinear dynamics cause sets to grow.
Automatically decompose polynomial into smaller
polynomials covering subsets to ensure convergence.

Taylor integrator: arbitrary order integrator using the Taylor flow

expansion.
Instead of numerical scheme, use Taylor flow expansion

and compute and evaluate at each time step.

Verified integration: Taylor integrator extended with verified Taylor
Models.
Computes verified enclosure of flow including truncation
and round-off errors in each step.
Yields verified enclosure of set (computer assisted proof).
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Axiom of Archimedes

Ve>03dneNst1/n<e

“every positive e can be multiplied by some n such that € - nis larger than 1”

Non-Archimedean Analysis: Drop axiom to allow infinitesimals
= The Levi-Civita Field

» Rigorous mathematical treatment of algebra with infinitesimals
» Provides rigorous theoretical underpinning for DA

» Useful to develop fast implementations of the computation of basic
DA algorithms

m contracting operators: number of correct orders increases by 1
m super-convergent operators: number of correct orders doubles
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