

Uncertainty Propagation Using Differential Algebra

Armellin Roberto

with contributions by:

Pierluigi Di Lizia, Alexander Wittig, Alessandro Morselli, Monica Valli

Workshop on Nonlinear Uncertainty Propagation using Differential Algebra 22nd September 2015

DINAMICA srl

Registered Office: Piazza della Repubblica, 10 - 20121 - Milano (Italy) Operational Headquarters: Via Morghen, 13 - 20156 - Milano (Italy) Phone +39 02 8342 2930 Fax +39 02 3206 6679 e-mail: dinamica@dinamicatech.com website: www.dinamicatech.com

Differential Algebra: basic concept

- Uncertainty propagation
 - ODEs flow expansion
 - Linear covariance propagation
 - DA-based Monte Carlo
 - DA-based statistical moments
 - Polynomial bounder
- Applications
 - SST: Impact probability computation
 - High-order filters
- Advanced methods
 - Automatic domain splitting

Differential Algebra: basic concept

- Uncertainty propagation
 - ODEs flow expansion
 - Linear covariance propagation
 - DA-based Monte Carlo
 - DA-based statistical moments
 - Polynomial bounder
- Applications
 - SST: Impact probability computation
 - High-order filters
- Advanced methods
 - Automatic domain splitting

Differential Algebra (DA) is an automatic differentiation technique

- Unlike standard automatic differentiation tools, the analytic operations of differentiation and antiderivation are introduced
- DA can be implemented in a computer environment (COSY-Infinity - Berz&Makino 1998, DACE, Jet Transport, JACK)
- Given any sufficiently regular function f of v, DA enables the computation of its Taylor expansion up to an arbitrary order k

Uncertainty propagation

low computational burden

low accuracy

computationally intensive

Monte Carlo

high accuracy

Can we find a compromise technique?

- We need a technique to:
 - Improve accuracy of linearized models
 - Reduce computational cost of classical Monte Carlo

Uncertainty propagation

Linearized models

Differential Algebra

--- Mo

Monte Carlo

low computational burden

low accuracy

computationally intensive

high accuracy

Can we find a compromise technique?

- We need a technique to:
 - Improve accuracy of linearized models

...

 Reduce computational cost of classical Monte Carlo

Given any dynamics

- Initialize initial conditions as a DA vector: $[m{x}_0] = m{x}_0 + \deltam{x}_0$
- Perform all operations of the integration scheme in the DA algebra

E.g.: Euler's scheme:
$$oldsymbol{x}_1 = oldsymbol{x}_0 + oldsymbol{f}(oldsymbol{x}_0) \cdot h$$

Given any dynamics

- Initialize initial conditions as a DA vector: $[m{x}_0] = m{x}_0 + \deltam{x}_0$
- Perform all operations of the integration scheme in the DA algebra

E.g.: Euler's scheme:
$$oldsymbol{x}_1 = oldsymbol{x}_0 + oldsymbol{f}(oldsymbol{x}_0) \cdot h$$
 $[oldsymbol{x}_0]$

Given any dynamics

- Initialize initial conditions as a DA vector: $[m{x}_0] = m{x}_0 + \deltam{x}_0$
- Perform all operations of the integration scheme in the DA algebra

E.g.: Euler's scheme:
$$[oldsymbol{x}_1] = [oldsymbol{x}_0] + oldsymbol{f}([oldsymbol{x}_0]) \cdot h$$

 $[x_1] = \mathcal{T}_{x_1}(\delta x_0)$: *k*-th order Taylor expansion of the solution at t_1

Given any dynamics

- Initialize initial conditions as a DA vector: $[m{x}_0] = m{x}_0 + \deltam{x}_0$
- Perform all operations of the integration scheme in the DA algebra

E.g.: Euler's scheme: $oldsymbol{x}_2 = oldsymbol{x}_1 + oldsymbol{f}(oldsymbol{x}_1) \cdot h$

Given any dynamics

- Initialize initial conditions as a DA vector: $[m{x}_0] = m{x}_0 + \deltam{x}_0$
- Perform all operations of the integration scheme in the DA algebra

E.g.: Euler's scheme:
$$oldsymbol{x}_2 = oldsymbol{x}_1 + oldsymbol{f}(oldsymbol{x}_1) \cdot h$$
 $[oldsymbol{x}_1] = \mathcal{T}_{oldsymbol{x}_1}(\delta oldsymbol{x}_0)$

Given any dynamics

- Initialize initial conditions as a DA vector: $[m{x}_0] = m{x}_0 + \deltam{x}_0$
- Perform all operations of the integration scheme in the DA algebra

E.g.: Euler's scheme:
$$[oldsymbol{x}_2] = [oldsymbol{x}_1] + oldsymbol{f}([oldsymbol{x}_1]) \cdot h$$

 $\sum [x_2] = \mathcal{T}_{x_2}(\delta x_0)$: *k*-th order Taylor expansion of the solution at t_2

Given any dynamics

$$\dot{x} = f(x, t)$$

 x_0
 x_0
 x_f
 $\mathcal{T}_{x_f}(\delta x_0)$

- Initialize initial conditions as a DA vector: $[m{x}_0] = m{x}_0 + \deltam{x}_0$
- Perform all operations of the integration scheme in the DA algebra

E.g.: Euler's scheme:
$$[oldsymbol{x}_f] = [oldsymbol{x}_{f-1}] + oldsymbol{f}([oldsymbol{x}_{f-1}]) \cdot h$$

 $\label{eq:relation} \boxed{[x_f] = \mathcal{T}_{x_f}(\delta x_0): \textit{k-th order Taylor expansion of the solution at } t_f}$

Expansion of the flow of dynamics

- Example: 2-body dynamics
 - Eccentricity: 0.5 Starting point: pericenter
 - Integration scheme: Runge-Kutta (variable step, order 8)
 - DA-based ODE flow expansion order: 6
- Initial box: 0.008 AU in x and 0.08 AU in y

• If all computations are performed to order 1, the final Taylor expansion $\mathcal{T}_{\boldsymbol{x}_f}^1(\delta \boldsymbol{x}_0)$ coincides with the state-transition matrix $\Phi(t_f, t_0)$ initial covariance C_0 can be propagated as: $C_f = \Phi C_0 \Phi^T$

• If all computations are performed to order 1, the final Taylor expansion $\mathcal{T}^1_{x_f}(\delta x_0)$ coincides with the state-transition matrix $\Phi(t_f, t_0)$

 \Longrightarrow Initial covariance $\ C_0$ can be propagated as: $\ C_f = \Phi \, C_0 \, \Phi^T$

No need of variational equations!

DA-based Monte Carlo

- Any pointwise integration can be replaced by the evaluation of the polynomial $\mathcal{T}_{m{x}_f}(\delta m{x}_0)$

Saving in computational time w.r.t. classical MC

DA-based Monte Carlo

- Any pointwise integration can be replaced by the evaluation of the polynomial $\mathcal{T}_{m{x}_f}(\delta m{x}_0)$
- Note:
 - The accuracy of Taylor expansion can be tuned with order
 - The same polynomial can be used to map different statistics

DA-based Monte Carlo

- Any pointwise integration can be replaced by the evaluation of the polynomial $\mathcal{T}_{m{x}_f}(\delta m{x}_0)$
- Note:
 - The accuracy of Taylor expansion can be tuned with order
 - The same polynomial can be used to map different statistics

- Given the k-order polynomial map: $[{m x}_f] = \mathcal{T}_{{m x}_f}(\delta {m x}_0)$
- Moments of the pdf can be x_f obtained by computing the expectation of the Taylor expansion: for the mean

$$E[\boldsymbol{x}_{f}] = \sum_{p=1}^{k} \frac{1}{p!} \Phi_{1...p} E[\delta x_{0,1} \dots \delta x_{0,p}] \quad \text{computed by Isserlis's formula}$$

 Same approach for high order moments (covariance, skeweness, kurtosis,...)

DA-based statistical moments

(a) Samples distribution after 0.8 orbit

(c) Samples distribution after 10 orbits

(b) Samples distribution after 5 orbits

(d) Samples distribution after 30 orbits

DA-based statistical moments

(a) Uncertainty ellipse after 0.8 orbit

(c) Uncertainty ellipse after 10 orbits

(b) Uncertainty ellipse after 5 orbits

(d) Uncertainty ellipse after 30 orbits

Polynomial bounder

- Polynomial bounders can immediately estimate the range of x_f

- Polynomial bounders can immediately estimate the range of x_f
- Example: very useful to discard the occurrence of an event
 - Impact of NEOs with Earth

Differential Algebra: basic concept

- Uncertainty propagation
 - ODEs flow expansion
 - Linear covariance propagation
 - DA-based Monte Carlo
 - DA-based statistical moments
 - Polynomial bounder
- Applications
 - SST: Impact probability computation
 - High-order filters
- Advanced methods
 - Automatic domain splitting

SST: impact probability computation

Suppose no impact occurrence for nominal initial states

- Suppose no impact occurrence for nominal initial states
- Impact conditions may occur for $x_0^{sat_i} \neq \overline{x}_0^{sat_i}$ at $t_{DCA} \neq \overline{t}_{DCA}$

- Suppose no impact occurrence for nominal initial states
- Impact conditions may occur for $x_0^{sat_i} \neq \overline{x}_0^{sat_i}$ at $t_{DCA} \neq \overline{t}_{DCA}$
- DA can be used to compute the Taylor expansion of the distance of closest approach (DCA) w.r.t. initial states:

- Suppose no impact occurrence for nominal initial states
- Impact conditions may occur for $x_0^{sat_i} \neq \overline{x}_0^{sat_i}$ at $t_{DCA} \neq \overline{t}_{DCA}$
- DA can be used to compute the Taylor expansion of the distance of closest approach (DCA) w.r.t. initial states:
 - Compute: $[x_f^{sat_i}] = \mathcal{T}_{x_f^{sat_i}}(\delta x_0^{sat_i}, \delta t_f)$ for i = 1, 2 $\square [d^2] = \mathcal{T}_{d^2}(\delta x_0^{sat_i}, \delta t_f) \square [\partial d^2 / \partial t_f] = \mathcal{T}_{d^2}(\delta x_0^{sat_i}, \delta t_f)$

- Suppose no impact occurrence for nominal initial states
- Impact conditions may occur for $x_0^{sat_i} \neq \overline{x}_0^{sat_i}$ at $t_{DCA} \neq \overline{t}_{DCA}$
- DA can be used to compute the Taylor expansion of the distance of closest approach (DCA) w.r.t. initial states:
 - Compute: $[x_f^{sat_i}] = \mathcal{T}_{x_f^{sat_i}}(\delta x_0^{sat_i}, \delta t_f)$ for i = 1, 2 $\Box > [d^2] = \mathcal{T}_{d^2}(\delta x_0^{sat_i}, \delta t_f) \supseteq [\partial d^2 / \partial t_f] = \mathcal{T}_{d^2}(\delta x_0^{sat_i}, \delta t_f)$
 - Invert:

 $[\delta t_f] = \mathcal{T}_{d^2}(\delta x_0^{sat_i}, \partial d^2/\partial t_f)$

• Impose $\partial d^2 / \partial t_f = 0$: $[t_{DCA}] = \mathcal{T}_{\partial d^2 = 0}(\delta x_0^{sat_i})$ $[d_{DCA}] = \mathcal{T}_{DCA}(\delta x_0^{sat_i})$

SST: impact probability computation

$$[d_{DCA}] = \mathcal{T}_{DCA}(\delta x_0^{sat_i})$$

 DA-based fast Monte Carlo simulations can be run on *T*_{DCA} to compute # of samples with

 $\mathcal{T}_{DCA} < \mbox{ threshold}$

- The map $\mathcal{T}_{DCA}(\delta x_0^{sat_i})$ was used for:
 - DA-based Monte Carlo (DAMC)
 - DA-based Line Sampling (DALS)
 - DA-based Subset Simulation (DASS)
- Different orbital regimes: LEO, MEO, GEO

more efficient for

low probabilities

- Efficiency of LS and SS over standard Monte Carlo for low probabilities:
 - Cumulative impact probability distribution for a close conjunction
 - # of samples: 14000

- Efficiency of LS and SS over standard Monte Carlo for low probabilities:
 - Cumulative impact probability distribution for a close conjunction
 - # of samples: 14000
 - No samples generated by standard MC below 5 m distance

- Efficiency of DAMC, DASS, and DALS over standard MC
- Three test cases (Alfano, 2009)
 - Test 5: linear relative motion ($P_c = 4.440 \text{E-2}$)
 - Test 6: boundary of linear relative motion ($P_c = 4.324E-3$)
 - Test 7: nonlinear relative motion ($P_c = 1.580E-4$)

Test case	Method	P_c [-]	N_T	$t_c \ [m s]$
	MC	4.452E-2	1.0E + 5	4.75
5	DAMC-3	4.459E-2	1.0E + 5	0.67
0	DALS-3	4.451E-2	5.0E + 3	2.53
	DASS-3	4.450E-2	$2.0E{+}4$	0.13
	MC	4.339E-3	1.0E + 6	43.21
6	DAMC-3	4.350E-3	1.0E + 6	6.67
Ŭ	DALS-3	4.341E-3	5.0E+3	2.58
	DASS-3	4.328E-3	$4.0E{+}4$	0.27
7	MC	1.615E-4	2.7E + 7	1155.36
	DAMC-3	1.612E-4	$2.7E{+7}$	179.34
	DALS-3	1.621E-4	5.0E+3	1.43
	DASS-3	1.626E-4	$6.0E{+}4$	0.43

- Efficiency of DAMC, DASS, and DALS over standard MC
- Three test cases (Alfano, 2009)
 - Test 5: linear relative motion ($P_c = 4.440 \text{E-2}$)
 - Test 6: boundary of linear relative motion ($P_c = 4.324E-3$)
 - Test 7: nonlinear relative motion ($P_c = 1.580E-4$)

Test case	Method	P_c [-]	N_T	$egin{array}{c} t_c \ [{ m s}] \end{array}$
	MC	4.452E-2	$1.0E{+}5$	4.75
5	DAMC-3	4.459E-2	$1.0\mathrm{E}{+5}$	0.67
0	DALS-3	4.451E-2	5.0E + 3	2.53
	DASS-3	4.450E-2	$2.0E{+}4$	0.13
	MC	4.339E-3	$1.0E{+}6$	43.21
6	DAMC-3	4.350E-3	$1.0E{+}6$	6.67
0	DALS-3	4.341E-3	$5.0\mathrm{E}{+3}$	2.58
	DASS-3	4.328E-3	$4.0E{+}4$	0.27
	MC	1.615E-4	$2.7E{+7}$	1155.36
7	DAMC-3	1.612E-4	$2.7\mathrm{E}{+7}$	179.34
•	DALS-3	1.621E-4	5.0E + 3	1.43
	DASS-3	1.626E-4	6.0E+4	0.43

- Efficiency of DAMC, DASS, and DALS over standard MC
- Three test cases (Alfano, 2009)
 - Test 5: linear relative motion ($P_c = 4.440 \text{E-2}$)
 - Test 6: boundary of linear relative motion ($P_c = 4.324E-3$)
 - Test 7: nonlinear relative motion ($P_c = 1.580E-4$)

Test case	Method	P_c [-]	N_T	t_c [s]
	MC	4.452E-2	$1.0E{+}5$	4.75
5	DAMC-3	4.459E-2	$1.0\mathrm{E}{+5}$	0.67
0	DALS-3	4.451E-2	5.0E+3	2.53
	DASS-3	4.450E-2	2.0E+4	0.13
	MC	4.339E-3	$1.0E{+}6$	43.21
6	DAMC-3	4.350E-3	$1.0\mathrm{E}{+6}$	6.67
	DALS-3	4.341E-3	5.0E+3	2.58
	DASS-3	4.328E-3	4.0E+4	0.27
7	MC	1.615E-4	$2.7E{+7}$	1155.36
	DAMC-3	1.612E-4	$2.7E{+7}$	179.34
	DALS-3	1.621E-4	5.0E+3	1.43
	DASS-3	1.626E-4	6.0E+4	0.43

- Efficiency of DAMC, DASS, and DALS over standard MC
- Three test cases (Alfano, 2009)
 - Test 5: linear relative motion ($P_c = 4.440 \text{E-2}$)
 - Test 6: boundary of linear relative motion ($P_c = 4.324E-3$)
 - Test 7: nonlinear relative motion ($P_c = 1.580E-4$)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Test case	Method	P_c [-]	N_T	$t_c \ [{ m s}]$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		MC	4.452E-2	$1.0E{+}5$	4.75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	DAMC-3	4.459E-2	$1.0E{+}5$	0.67
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	DALS-3	4.451E-2	5.0E + 3	2.53
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		DASS-3	4.450E-2	$2.0E{+}4$	0.13
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		MC	4.339E-3	$1.0E{+}6$	43.21
DALS-3 4.341E-3 5.0E+3 2.5 DASS-3 4.328E-3 4.0E+4 0.2 MC 1.615E-4 2.7E+7 1155.3 7 DAMC-3 1.612E-4 2.7E+7 179.3 DALS-3 1.621E-4 5.0E+3 1.4 DASS-3 1.626E-4 6.0E+4 0.4	6	DAMC-3	4.350E-3	1.0E + 6	6.67
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		DALS-3	4.341E-3	5.0E + 3	2.58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		DASS-3	4.328E-3	$4.0E{+}4$	0.27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	MC	1.615E-4	$2.7E{+7}$	1155.36
DALS-3 1.621E-4 5.0E+3 1.4 DASS-3 1.626E-4 6.0E+4 0.4		DAMC-3	1.612E-4	$2.7E{+7}$	179.34
DASS-3 $1.626E-4$ $6.0E+4$ 0.4		DALS-3	1.621E-4	5.0E + 3	1.43
		DASS-3	1.626E-4	6.0E + 4	0.43

High-order Kalman filters

• Given the discrete system model:

$$\mathbf{x}_{k+1} = \boldsymbol{\phi}(t_{k+1}; \mathbf{x}_k, t_k) + \mathbf{w}_k$$
$$\mathbf{z}_{k+1} = \mathbf{h}(\mathbf{x}_{k+1}, t_{k+1}) + \mathbf{v}_{k+1}$$

- Suppose to have the state \mathbf{x}_k , with mean \mathbf{m}_k^+ and covariance \mathbf{P}_k^+
- General filtering algorithm:
 - Prediction:

$$\mathbf{m}_{k+1}^{-} = E[\boldsymbol{\phi}(t_{k+1}; \mathbf{x}_k, t_k) + \mathbf{w}_k \mid \mathbf{z}_k]$$
$$\mathbf{P}_{k+1}^{-} = E\{[\boldsymbol{\phi}(t_{k+1}; \mathbf{x}_k, t_k) + \mathbf{w}_k][\boldsymbol{\phi}(t_{k+1}; \mathbf{x}_k, t_k) + \mathbf{w}_k]^T \mid \mathbf{z}_k\} - (\mathbf{m}_{k+1}^{-})(\mathbf{m}_{k+1}^{-})^T$$
$$\mathbf{n}_{k+1}^{-} = E[\mathbf{h}(\mathbf{x}_{k+1}, t_{k+1}) + \mathbf{v}_{k+1} \mid \mathbf{z}_k]$$

• Update:

High-order Kalman filters

• Given the discrete system model:

$$\mathbf{x}_{k+1} = \boldsymbol{\phi}(t_{k+1}; \mathbf{x}_k, t_k) + \mathbf{w}_k$$
$$\mathbf{z}_{k+1} = \mathbf{h}(\mathbf{x}_{k+1}, t_{k+1}) + \mathbf{v}_{k+1}$$

- Suppose to have the state \mathbf{x}_k , with mean \mathbf{m}_k^+ and covariance \mathbf{P}_k^+
- General filtering algorithm:
 - Prediction:

classical approach: linearization

$$\mathbf{m}_{k+1}^{-} = E[\boldsymbol{\phi}(t_{k+1}; \mathbf{x}_k, t_k) + \mathbf{w}_k \mid \mathbf{z}_k]$$
$$\mathbf{P}_{k+1}^{-} = E\{[\boldsymbol{\phi}(t_{k+1}; \mathbf{x}_k, t_k) + \mathbf{w}_k][\boldsymbol{\phi}(t_{k+1}; \mathbf{x}_k, t_k) + \mathbf{w}_k]^T \mid \mathbf{z}_k\} - (\mathbf{m}_{k+1}^{-})(\mathbf{m}_{k+1}^{-})^T$$
$$\mathbf{n}_{k+1}^{-} = E[\mathbf{h}(\mathbf{x}_{k+1}, t_{k+1}) + \mathbf{v}_{k+1} \mid \mathbf{z}_k]$$

• Update:

DA provides high-order polynomials for

$$egin{aligned} \mathbf{x}_{k+1} &= \mathcal{T}_{oldsymbol{\phi}_{k,k+1}}(\delta \mathbf{x}_k) + \mathbf{w}_k \ \mathbf{z}_{k+1} &= \mathcal{T}_{\mathbf{h}_{k+1}}(\delta \mathbf{x}_{k+1}) + \mathbf{v}_{k+1} \end{aligned}$$

Expectations can then be computed on polynomials. E.g.:

$$\mathbf{m}_{k+1}^{-} = \sum_{p=1}^{m} \frac{1}{p!} \phi_{k,k+1}^{\gamma_1 \dots \gamma_p} E(\delta \mathbf{x}_k^{\gamma_1} \dots \delta \mathbf{x}_k^{\gamma_p})$$
coefficients of the polynomials

where $E(\delta \mathbf{x}_k^{\gamma_1} \dots \delta \mathbf{x}_k^{\gamma_p})$ is computed using Isserlis' formula

- Prediction step is fully nonlinear:
 - Faster convergence
 - Possible reduction of measurements acquisition frequency

High-order Kalman filters

- Example: 2-Body Problem
 - State variables: S/C position and velocity
 - Uncertainty on initial conditions (10% off from true initial state) and no process noise
 - Nonlinear measurements with realistic measurement noise (radial position of the S/C wrt the Earth and the LOS direction to Earth)

Differential Algebra: basic concept

- Uncertainty propagation
 - ODEs flow expansion
 - Linear covariance propagation
 - DA-based Monte Carlo
 - DA-based statistical moments
 - Polynomial bounder
- Applications
 - SST: Impact probability computation
 - High-order filters
- Advanced methods
 - Automatic domain splitting

Automatic domain splitting

 In challenging cases, a high-order Taylor expansion is not sufficient to accurately map uncertainties

 In challenging cases, a high-order Taylor expansion is not sufficient to accurately map uncertainties

- An algorithm can be implemented to automatically split the initial domain to guarantee the desired accuracy
- Very useful for: large uncertainty sets, long-term propagations, highly nonlinear dynamics

Automatic domain splitting

Long term propagation of Apophis motion (NEODys in Sept. 2009)

Automatic domain splitting

Conclusions

- improve efficiency of standard nonlinear methods
- improve accuracy of standard linear methods
- Note: method based on Taylor approximations

Size of uncertainty set and order shall guarantee sufficient accuracy

- Polynomials can be manipulated to impose constraints on both initial and final state (e.g. see SST application)
- If linear methods are sufficiently accurate for your application, you may not need to increase order, however...
- ... DA relieves you from the "pain" of writing variational equations

References

2015

- High order transfer maps for perturbed Keplerian motion. Celestial Mechanics and Dynamical Astronomy
- Propagation of large uncertainty sets in orbital dynamics by automatic domain splitting. Celestial Mechanics and Dynamical Astronomy

2014

- A high order method for orbital conjunctions analysis: Monte Carlo collision probability computation. Advances in Space Research
- Efficient evaluation of vapour–liquid equilibria from multi-parameter thermodynamic models using differential algebra. Journal of Computational and Applied Mathematics
- A high order method for orbital conjunctions analysis: sensitivity to initial uncertainties. Advances in Space Research
- High order optimal feedback control of space trajectories with bounded control. Acta Astronautica
- Nonlinear filtering methods for spacecraft navigation based on differential algebra. Acta Astronautica
- High order optimal control of space trajectories with uncertain boundary conditions. Acta Astronautica

2013

- Nonlinear mapping of uncertainties in celestial mechanics. Journal of Guidance, Control, and Dynamics
- Rigorous computation of orbital conjunctions. Advances in Space Research

References

2012

- High-order expansion of the solution of preliminary orbit determination problem. Celestial Mechanics and Dynamical Astronomy
- Rigorous global optimization of impulsive planet-to-planet transfers in the patched-conics approximation. Engineering Optimization

2010

- Asteroid close encounters characterization using differential algebra: the case of Apophis. Celestial Mechanics and Dynamical Astronomy
- Computing the critical points of the distance function between two Keplerian orbits via rigorous global optimization. Celestial Mechanics and Dynamical Astronomy
- Gravity assist space pruning based on differential algebra. Celestial Mechanics and Dynamical Astronomy

2008

- Application of high order expansions of two-point boundary value problems to astrodynamics. Celestial Mechanics and Dynamical Astronomy
- High-order robust guidance of interplanetary trajectories based on differential algebra. Journal of Aerospace Engineering, Sciences and Applications

Uncertainty Propagation Using Differential Algebra

Armellin Roberto

with contributions by:

Pierluigi Di Lizia, Alexander Wittig, Alessandro Morselli, Monica Valli,

Workshop on Nonlinear Uncertainty Propagation using Differential Algebra 22nd September 2015

DINAMICA sri

Registered Office: Piazza della Repubblica, 10 - 20121 - Milano (Italy) Operational Headquarters: Via Morghen, 13 - 20156 - Milano (Italy) Phone +39 02 8342 2930 Fax +39 02 3206 6679 e-mail: dinamica@dinamicatech.com website: www.dinamicatech.com