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Outline

▪  Uncertainty propagation 
•  ODEs flow expansion 
•  Linear covariance propagation 
•  DA-based Monte Carlo  
•  DA-based statistical moments  
•  Polynomial bounder 

•  SST: Impact probability computation 
•  High-order filters 

▪  Applications 

▪  Differential Algebra: basic concept  

▪  Advanced methods  
•  Automatic domain splitting 
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Differential algebra: basic concept

‣  Given any sufficiently regular function      of     , DA enables the 
computation of its Taylor expansion up to an arbitrary order    

‣  Differential Algebra (DA) is an automatic differentiation technique

Algebra of  
real numbers

Algebra of  
Taylor polynomials

‣  DA can be implemented in a computer environment (COSY-
Infinity - Berz&Makino 1998, DACE, Jet Transport, JACK)

‣  Unlike standard automatic differentiation tools, the analytic 
operations of differentiation and antiderivation are introduced

k
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Uncertainty propagation

… 

low computational burden computationally intensive 

Can we find a compromise technique? 

▪  We need a technique to: 
•  Improve accuracy of linearized models 
•  Reduce computational cost of classical 

Monte Carlo 

low accuracy high accuracy 
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▪  Given any dynamics 

•  Initialize initial conditions as a DA vector:  
•  Perform all operations of the integration scheme in the DA algebra 

E.g.: Euler’s scheme: 

Expansion of the flow of dynamics
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▪  Example: 2-body dynamics 
•  Eccentricity: 0.5 – Starting point: pericenter 
•  Integration scheme: Runge-Kutta (variable step, order 8) 
•  DA-based ODE flow expansion order: 6 

▪  Initial box: 0.008 AU in x and 0.08 AU in y 

Expansion of the flow of dynamics



•  If all computations are performed to order 1, the final Taylor expansion              
                  coincides with the state-transition matrix 

Initial covariance        can be propagated as:   

Linear covariance propagation



•  If all computations are performed to order 1, the final Taylor expansion              
                  coincides with the state-transition matrix 

Initial covariance        can be propagated as:   

No need of variational equations! 

Linear covariance propagation



•  Any pointwise integration can be replaced by the evaluation of 
the polynomial 

Saving in computational time w.r.t. classical MC 

DA-based Monte Carlo 



•  Any pointwise integration can be replaced by the evaluation of 
the polynomial 

▪  Note: 
•  The accuracy of Taylor expansion can be tuned with order 
•  The same polynomial can be used to map different statistics 

DA-based MC 

Standard MC 

DA-based Monte Carlo 
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DA-based statistical moments 

▪  Given the k-order polynomial map: 

▪  Moments of the pdf can be        obtained by computing the 
expectation of the Taylor expansion: for the mean 

computed by Isserlis’s 
formula 

▪  Same approach for high order moments (covariance, 
skeweness, kurtosis,…) 



DA-based statistical moments 



DA-based statistical moments 



Polynomial bounder



•  Polynomial bounders can immediately estimate the range of  

Bounds of  

Polynomial bounder



•  Polynomial bounders can immediately estimate the range of  

Bounds of  

▪  Example: very useful to discard 
the occurrence of an event  
•  Impact of NEOs with Earth 

Polynomial bounder
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SST: impact probability computation

▪  Suppose no impact occurrence for nominal initial states 
▪  Impact conditions may occur for 
▪  DA can be used to compute the Taylor expansion of the distance 

of closest approach (DCA) w.r.t. initial states: 

•  Invert:  

at 

•  Compute:                                             for   

•  Impose                        :  



SST: impact probability computation

▪  DA-based fast Monte Carlo 
simulations can be run on 
           to compute # of 
samples with  

threshold 

▪  The map                         was used for: 
•  DA-based Monte Carlo (DAMC) 
•  DA-based Line Sampling (DALS) 
•  DA-based Subset Simulation (DASS) 

▪  Different orbital regimes: LEO, MEO, GEO 

more efficient for 
low probabilities 
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SST: impact probability computation

▪  Efficiency of LS and SS over standard Monte Carlo for low 
probabilities: 
•  Cumulative impact probability distribution for a close conjunction 
•  # of samples: 14000 
•  No samples generated by standard MC below 5 m distance 



SST: impact probability computation

▪  Efficiency of DAMC, DASS, and DALS over standard MC 
▪  Three test cases (Alfano, 2009) 

•  Test 5: linear relative motion (         4.440 E-2 )         
•  Test 6: boundary of linear relative motion (         4.324 E-3 ) 
•  Test 7: nonlinear relative motion (         1.580 E-4 )   

* Intel Core i5 2500 @3.30GHz, 8Gb RAM 
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▪  Suppose to have the state      , with mean        and covariance 

▪  Given the discrete system model: 

▪  General filtering algorithm: 
•  Prediction:

•  Update:



High-order Kalman filters

▪  Suppose to have the state      , with mean        and covariance 

▪  Given the discrete system model: 

▪  General filtering algorithm: 
•  Prediction:

•  Update:

classical approach: linearization



High-order Kalman filters

▪  DA provides high-order polynomials for 

▪  Expectations can then be computed on polynomials. E.g.: 

coefficients of the polynomials

where                           is computed using Isserlis’ formula  
▪  Prediction step is fully nonlinear: 

•  Faster convergence
•  Possible reduction of measurements acquisition frequency



High-order Kalman filters

▪  Example: 2-Body Problem 
•  State variables: S/C position and velocity
•  Uncertainty on initial conditions (10% off from true initial state) and 

no process noise 
•  Nonlinear measurements with realistic measurement noise (radial 

position of the S/C wrt the Earth and the LOS direction to Earth)
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 Automatic domain splitting

▪  In challenging cases, a high-order Taylor expansion is not 
sufficient to accurately map uncertainties 

Initial set 



 Automatic domain splitting

▪  In challenging cases, a high-order Taylor expansion is not 
sufficient to accurately map uncertainties 

Initial set 

▪  An algorithm can be implemented to automatically split the initial 
domain to guarantee the desired accuracy 

▪  Very useful for: large uncertainty sets, long-term propagations,  
highly nonlinear dynamics 
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ti = 1.91 revs. 

7 boxes 
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Sun 

ti = 2.81 revs. 

23 boxes 

Computational time: 22 s 
(2.4 GHz Intel Core i5) 



 Automatic domain splitting

▪  Long term propagation of Apophis motion (NEODys in Sept. 2009) 

2040 2036 



 Automatic domain splitting

▪  Long term propagation of Apophis motion weaker nonlinearity 



Conclusions

▪  Differential Algebra can 

▪  … DA relieves you from the “pain” of writing variational equations 

▪  Polynomials can be manipulated to impose constraints on both 
initial and final state (e.g. see SST application) 

▪  Note: method based on Taylor 
approximations 

Size of uncertainty set and 
order shall guarantee sufficient 
accuracy  

•  improve efficiency of standard nonlinear methods 
•  improve accuracy of standard linear methods 

▪  If linear methods are sufficiently accurate for your application, you 
may not need to increase order, however… 
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