
DINAMICA srl
Registered Office:

Piazza della Repubblica, 10 - 20121 - Milano (Italy)
Operational Headquarters:

Via Morghen, 13 - 20156 - Milano (Italy)
Phone +39 02 8342 2930

Fax +39 02 3206 6679
e-mail: dinamica@dinamicatech.com

website: www.dinamicatech.com

DAST: Nonlinear Uncertainty
Propagation using Differential
Algebra
Hands-on Demo Session
22nd September 2015

22/09/2015

Outline

 DA Computational Engine (DACE)
 Overview
 General Architecture
 Hands-on session

 Single Variable Functions
 Multivariable Functions

 Uncertainty Propagation Tool (UPT)
 General Architecture
 Matlab Routine
 Hands-on session

 Interplanetary Satellite

Uncertainty Propagation Tool (UPT)
UPT Interface Function

UPT MEX core routine Software Framework (SF)

UPT Analysis Function
Gaussian Uniform STM

UPT Output function

22/09/2015

Uncertainty Propagation Tool
General Architecture

 UPT Architecture Design
o UPT Interface Function: interface between

Matlab and UPT.
o UPT MEX Core Routine: to set up the DA

environment and perform DA propagation
(interface with SF routines)

o UPT Analysis Function: to perform the
required analyses on the results.

o UPT Output Function: to easily handle the
results.

The purpose of the UPT is to allow users to perform uncertainty
propagations, based on Taylor differential algebra, directly within

MATLAB.

22/09/2015

Uncertainty Propagation Tool
Matlab Routine

The user must provide a Matlab structure (model
structure) containing all information for the setup
of the dynamical model

The user must provide a Matlab structure (method
structure) containing all information for the setup of
the uncertainty propagation method

Once the method and model structures are defined,
the user can start the simulation using the routine
UPTrun

UPTmodel
Matlab function for dynamical model

definition
1

UPTmethod
Matlab function for propagation method

definition
2

UPTrun
MEX file to perform DA propagations

3

UPTeval
Matlab function to be used for additional

evaluations of the final DA map
4 The user must provide the information on the

covariance (or state interval), the sample distribution
and number of samples

model = UPTmodel('param1',value1,'param2', value2,...);model = UPTmodel('param1',value1,'param2', value2,...);

method = UPTmethod('param1',value1,'param2',value2, ...);method = UPTmethod('param1',value1,'param2',value2, ...);

[UPToutput,UPTinput] = UPTrun('Model',model,'Method',method);[UPToutput,UPTinput] = UPTrun('Model',model,'Method',method);

[xf_distr,x0_distr,p0_distr] = UPTeval(UPToutput,...
'Distribution',nsamples);

[xf_distr,x0_distr,p0_distr] = UPTeval(UPToutput,...
'Distribution',nsamples);

22/09/2015

Uncertainty Propagation Tool
Matlab Routine

The user must provide a Matlab structure (model
structure) containing all information for the setup
of the dynamical model

The user must provide a Matlab structure (method
structure) containing all information for the setup of
the uncertainty propagation method

Once the method and model structures are defined,
the user can start the simulation using the routine
UPTrun

UPTmodel
Matlab function for dynamical model

definition
1

UPTmethod
Matlab function for propagation method

definition
2

UPTrun
MEX file to perform DA propagations

3

UPTeval
Matlab function to be used for additional

evaluations of the final DA map
4 The user must provide the information on the

covariance (or state interval), the sample distribution
and number of samples

model = UPTmodel('param1',value1,'param2', value2,...);model = UPTmodel('param1',value1,'param2', value2,...);

method = UPTmethod('param1',value1,'param2',value2, ...);method = UPTmethod('param1',value1,'param2',value2, ...);

[UPToutput,UPTinput] = UPTrun('Model',model,'Method',method);[UPToutput,UPTinput] = UPTrun('Model',model,'Method',method);

[xf_distr,x0_distr,p0_distr] = UPTeval(UPToutput,...
'Distribution',nsamples);

[xf_distr,x0_distr,p0_distr] = UPTeval(UPToutput,...
'Distribution',nsamples);

22/09/2015

Uncertainty Propagation Tool
Matlab Routine

The user must provide a Matlab structure (model
structure) containing all information for the setup
of the dynamical model

The user must provide a Matlab structure (method
structure) containing all information for the setup of
the uncertainty propagation method

Once the method and model structures are defined,
the user can start the simulation using the routine
UPTrun

UPTmodel
Matlab function for dynamical model

definition
1

UPTmethod
Matlab function for propagation method

definition
2

UPTrun
MEX file to perform DA propagations

3

UPTeval
Matlab function to be used for additional

evaluations of the final DA map
4 The user must provide the information on the

covariance (or state interval), the sample distribution
and number of samples

model = UPTmodel('param1',value1,'param2', value2,...);model = UPTmodel('param1',value1,'param2', value2,...);

model = UPTmethod('param1',value1,'param2',value2, ...);model = UPTmethod('param1',value1,'param2',value2, ...);

[UPToutput,UPTinput] = UPTrun('Model',model,'Method',method);[UPToutput,UPTinput] = UPTrun('Model',model,'Method',method);

[xf_distr,x0_distr,p0_distr] = UPTeval(UPToutput,...
'Distribution',nsamples);

[xf_distr,x0_distr,p0_distr] = UPTeval(UPToutput,...
'Distribution',nsamples);

22/09/2015

Uncertainty Propagation Tool
Example: Interplanetary Satellite

Let us consider an interplanetary satellite. Given an uncertainty on the initial
state vector, the UPT serves the purpose of determining the statistics at final

instant time,

 Initial State & Simulation Epochs
Orbital Parameter

Semi-major axis [AU] 1.6
Inclination [deg] 0

RAAN [deg] 0
Argument of perigee [deg] 0

Eccentricity 0.3
True anomaly [deg] 0

ݐ ൌᇱ 2009 െ 06 െ 17ܶ00: 00: 00ᇱ
ݐ ൌᇱ 2010 െ 03 െ 17ܶ00: 00: ݐ00′ ൌᇱ 2009 െ 06 െ 17ܶ00: 00: 00ᇱ
ݐ ൌᇱ 2010 െ 03 െ 17ܶ00: 00: 00′

Cartesian State
X [AU] 1.12
Y [AU] 0
Z [AU] 0

Vx [AU/day] 0
Vy [AU/day] 0.018532930835363
Vz [AU/day] 0

ݐ݁ ൌ 2.984688661844962݁ ݐ݁ܿ݁ݏ 08 ൌ 3.220560661855782݁ 08 sec݁ݐ ൌ 2.984688661844962݁ ݐ݁ܿ݁ݏ 08 ൌ 3.220560661855782݁ 08 sec

22/09/2015

 Two-Body Dynamical Model

Uncertainty Propagation Tool
Example: Interplanetary Satellite

Cartesian State
X [AU] 1.12
Y [AU] 0
Z [AU] 0

Vx [AU/day] 0
Vy [AU/day] 0.018532930835363
Vz [AU/day] 0

ݐ݁ ൌ 2.984688661844962݁ ݐ݁ܿ݁ݏ 08 ൌ 3.220560661855782݁ 08 sec݁ݐ ൌ 2.984688661844962݁ ݐ݁ܿ݁ݏ 08 ൌ 3.220560661855782݁ 08 sec

Uncertainties on initial state

22/09/2015

 What will we do??
 Given the uncertainties on initial state, we compute the statistics at using the DA-based Monte Carlo Simulation method

 EX. 1-2: Gaussian Initial Distribution / Two-body Model / Order 1
 EX. 3: Gaussian Initial Distribution / Two-body Model / Order 3
 EX. 5: Gaussian Initial Distribution / N-body Model / Order 3
 EX. 6: Uniform Initial Distribution / N-body Model / Order 3

 Given the uncertainties on initial state, we compute the statistics at using the Linearized Dynamics method
 EX. 4: Gaussian Initial Distribution / Two-body Model

 Given the uncertainties on initial state, we determine the upper and lower
bounders of final uncertainties using Polynomial Bounder method
 EX. 7: Uniform Initial Distribution / N-body Model / Order 3

Uncertainty Propagation Tool
Exercises Summary

22/09/2015

Uncertainty Propagation Tool
Before Starting...

 Matlab
 Open Matlab
 Change the current folder to Workshop in the address field of the current

folder toolbar of Matlab

Click on
Browser

Explorer button

22/09/2015

Uncertainty Propagation Tool
Before Starting...

 Matlab
 Open Matlab
 Change the current folder to Workshop in the address field of the current

folder toolbar of Matlab

 Change the current folder to run folder in the address field of the current
folder toolbar of Matlab

22/09/2015

Uncertainty Propagation Tool
Before Starting...

 Matlab
 Add the lib, matlab, examples, and Workshop folders (included in the

DinamicaUPT) to Matlab path.
% Add needed path for UPT
DinamicaUPT_folder = pwd;
addpath(fullfile(DinamicaUPT_folder,'matlab'));
addpath(fullfile(DinamicaUPT_folder,'lib'));
addpath(fullfile(DinamicaUPT_folder,'examples'));
addpath(fullfile(DinamicaUPT_folder,'examples','Workshop'));
warning off

Run the UPTpath.m

cd (fullfile(pwd,'run'));

22/09/2015

Uncertainty Propagation Tool
Example: Interplanetary Satellite

Cartesian State
X [AU] 1.12
Y [AU] 0
Z [AU] 0

Vx [AU/day] 0
Vy [AU/day] 0.018532930835363
Vz [AU/day] 0

ݐ݁ ൌ 2.984688661844962݁ ݐ݁ܿ݁ݏ 08 ൌ 3.220560661855782݁ 08 sec݁ݐ ൌ 2.984688661844962݁ ݐ݁ܿ݁ݏ 08 ൌ 3.220560661855782݁ 08 sec

 Initial State & Simulation Epochs
 Run the InitialState.m to set the initial nominal conditions and simulation

interval or type the following script in Matlab command window
% Initial State
state = [1.1200, 0, 0, 0, 0.018532930835363, 0];
% Initial epoch: t0 = '2009-06-17T00:00:00';
et0 = 2.984688661844962e+08;
% Final epoch: tf = '2010-03-17T00:00:00';
etf = 3.220560661855782e+08;
dt_sec = etf - et0;

22/09/2015

Uncertainty Propagation Tool
Example: Interplanetary Satellite

 EX. 1: Perform a DA-based Monte Carlo Simulation assuming an expansion
order equal to 1 (referred to as DAMC-G1). A Gaussian distribution is
considered for each initial state (the covariance matrix must be defined).
The uncertainties are propagate through the two-body dynamics.

௫௫ ௬௬ ௭௭ ௫ሶ௫ሶ ௬ሶ ௬ሶ ௭ሶ௭ሶ
௫௫ ௬௬ ௭௭
௫ሶ௫ሶ ௬ሶ ௬ሶ ௭ሶ௭ሶ

% Covariance Matrix
Cov = diag([1e-4*ones(1,3), 1e-10*ones(1,3)]);

22/09/2015

Uncertainty Propagation Tool
Example: Interplanetary Satellite

 EX. 1: Perform a DA-based Monte Carlo Simulation assuming an expansion
order equal to 1 (referred to as DAMC-G1). A Gaussian distribution is
considered for each initial state (the covariance matrix must be defined).
The uncertainties are propagated through the two-body dynamics.

% Define the dynamical model by UPTmodel routine
model_R2BP = UPTmodel('Model', 'R2BP', 'MainAttractor', 'SUN', 'InitialState', state, ...

'Coordinate', 'RECTANGULAR', 'Frame', 'ECLIPJ2000','FrameCenter', 'SUN', ...
'InitialEpoch', t0, 'FinalEpoch', tf, 'LengthUnits', 'AU', ...
'TimeUnits', 'DAY', 'AngleUnits', 'RAD', 'Tolerance',1e-12);

% Define Covariance Matrix
Cov = diag([1e-4*ones(1,3),1e-10*ones(1,3)]);
% Define the uncertainty propagation method by UPTmethod routine
a_x = [1 1 1 1 1 1]; nsample = 1e5; order = 1;
method_DAMCG1 = UPTmethod('Method', 'DAMC', 'Distribution','GAUSSIAN',...

'CovarianceMatrix', Cov, 'UncertainStates', a_x,'Samples', nsamples,...
'Order', order);

% Propagate the initial uncertainties by UPTrun routine
[UPToutput_DAMCG1, UPTinput_DAMCG1] = UPTrun('Model', model_R2BP, 'Method', method_DAMCG1);
x0_distr_DAMCG = UPToutput_DAMCG1.x0_distr;
xf_distr_DAMCG1 = UPToutput_DAMCG1.xf_distr;
LB0_DAMCG = min(x0_distr_DAMCG,[],2);
UB0_DAMCG = max(x0_distr_DAMCG,[],2);
COV_DAMCG1 = UPToutput_DAMCG1.finalcov;
mean_DAMCG1 = UPToutput_DAMCG1.finalmean;

22/09/2015

 EX. 1: Perform a DA-based Monte Carlo Simulation assuming an expansion
order equal to 1 (referred to as DAMC-G1). A Gaussian distribution is
considered for each initial state (the covariance matrix must be defined).
The uncertainties are propagated through the two-body dynamics.

߬ெିீଵ ൌ ெିீଵ߬ܿ݁ݏ 0.186 ൌ ܿ݁ݏ 0.186

Uncertainty Propagation Tool
Example: Interplanetary Satellite

22/09/2015

Uncertainty Propagation Tool
Example: Interplanetary Satellite

 EX. 1: Perform a DA-based Monte Carlo Simulation assuming an expansion
order equal to 1 (referred to as DAMC-G1). A Gaussian distribution is
considered for each initial state (the covariance matrix must be defined).
The uncertainties are propagated through the two-body dynamics.

22/09/2015

Uncertainty Propagation Tool
Example: Interplanetary Satellite

 EX. 2: Compare DAMC-G1 results with Standard Monte Carlo (referred to as
sMC) ones. The same initial Gaussian distribution of EX. 1 is used. The
uncertainties are propagated through the two-body dynamics.

22/09/2015

Uncertainty Propagation Tool
Example: Interplanetary Satellite

 EX. 2: Compare DAMC-G1 results with Standard Monte Carlo (referred to as
sMC) ones. The same initial Gaussian distribution of EX. 1 is used. The
uncertainties are propagated through the two-body dynamics.

% Standard Monte Carlo Simulation
xf_sMC = zeros(6,size(x0_distr_DAMCG,2));
tic
for i = 1:size(x0_distr_DAMCG,2)

% Solve the Kepler Equation
[r, v] = keplerUniversal(x0_distr_DAMCG(1:3,i)*AU, x0_distr_DAMCG(4:6,i)*AU/day,dt_sec,mu);
xf_sMC(1:3,i) = r/AU;
xf_sMC (4:6,i) = v*day/AU;

end
computational_time.sMC = toc;
COV_sMC = cov(xf_sMC');
mean_sMC = mean(xf_sMC,2);

22/09/2015

Uncertainty Propagation Tool
Example: Interplanetary Satellite

߬ெିீଵ ൌ 0.186 ሾܿ݁ݏሿ
߬௦ெିீ ൌ 38.11 ሾܿ݁ݏሿ

߬ெିீଵ ൌ 0.186 ሾܿ݁ݏሿ
߬௦ெିீ ൌ 38.11 ሾܿ݁ݏሿ

,௫ߝ ൌ ݔܽ݉ ெିீଵ࢘ െ ௦ெିீ࢘ ൌ
0.065747 ሾܷܣሿ

ൌ 7.581394݁ െ 04ሾ ܷܣ
ሿݕܽ݀

,௫ߝ ൌ ݔܽ݉ ெି࢘ െ ௦ெିீ࢘ ൌ
0.065747 ሾܷܣሿߝ௩,௫ ൌ ݉ܽ ெି࢜ െ ௦ெ࢜

ൌ 7.581394݁ െ 04ሾ ܷܣ
ሿݕܽ݀

 EX. 2: Compare DAMC-G1 results with Standard Monte Carlo (referred to as
sMC) ones. The same initial Gaussian distribution of EX. 1 is used. The
uncertainties are propagated through the two-body dynamics.

22/09/2015

Uncertainty Propagation Tool
Example: Interplanetary Satellite

 EX. 3: Perform a DAMC-G3 simulation and compare with sMC. The same
initial Gaussian distribution of EX. 1 is used. The uncertainties are propagated
through the two-body dynamics.

22/09/2015

Uncertainty Propagation Tool
Example: Interplanetary Satellite

 EX. 3: Perform a DAMC-G3 simulation and compare with sMC. The same
initial Gaussian distribution of EX. 1 is used. The uncertainties are propagated
through the two-body dynamics.

% Define the uncertainty propagation method by UPTmethod routine
a_x = [1 1 1 1 1 1]; nsample = 1e5; order = 3;
method_DAMCG3 = UPTmethod('Method', 'DAMC', 'Distribution','GAUSSIAN',...

'CovarianceMatrix', Cov, 'UncertainStates', a_x,'Samples', 1e1,...
'Order', order);

% Propagate the initial uncertainties by UPTrun routine
tic;
[UPToutput_DAMCG3, UPTinput_DAMCG3] = UPTrun('Model', model_R2BP, 'Method', method_DAMCG3);
[xf_distr_DAMCG3] = UPTeval(UPToutput_DAMCG3, x0_distr_DAMCG, nsample);
computationalime.DAMCG3 = toc;
COV_DAMCG3 = cov(xf_distr_DAMCG3');
mean_DAMCG3 = mean(xf_distr_DAMCG3,2);

22/09/2015

Uncertainty Propagation Tool
Example: Interplanetary Satellite

,௫ߝ ൌ ݔܽ݉ ெିீଷ࢘ െ ௦ெିீ࢘ ൌ
0.001574ሾܷܣሿ

ൌ 2.689792݁ െ 05 ሾ ܷܣ
ሿݕܽ݀

,௫ߝ ൌ ݔܽ݉ ெି࢘ െ ௦ெିீ࢘ ൌ
0.001574ሾܷܣሿߝ௩,௫ ൌ ݔܽ݉ ெିீଷ࢜ െ ௦ெିீ࢜

ൌ 2.689792݁ െ 05 ሾ ܷܣ
ሿݕܽ݀

߬ெିீଷ ൌ 0.482 ሾܿ݁ݏሿ
߬௦ெିீ ൌ 38.11 ሾܿ݁ݏሿ

߬ெିீଷ ൌ 0.482 ሾܿ݁ݏ
߬௦ெିீ ൌ 38.11 ሾܿ݁ݏሿ

 EX. 3: Perform a DAMC-G3 simulation and compare with sMC. The same
initial Gaussian distribution of EX. 1 is used. The uncertainties are propagated
through the two-body dynamics.

22/09/2015

Uncertainty Propagation Tool
Example: Interplanetary Satellite

 EX. 4: Compute the final covariance matrix through the Linearized Dynamics
method (referred to as LD) and compare the results with those obtained by
DAMC-G1, DAMC-G3, and sMC. The same initial Gaussian distribution of
EX. 1 is used. The uncertainties are propagated through the two-body
dynamics.

22/09/2015

Uncertainty Propagation Tool
Example: Interplanetary Satellite

 EX. 4: Compute the final covariance matrix through the Linearized Dynamics
method (referred to as LD) and compare the results with those obtained by
DAMC-G1, DAMC-G3, and sMC. The same initial Gaussian distribution of
EX. 1 is used. The uncertainties are propagated through the two-body
dynamics.

% Define the uncertainty propagation method by UPTmethod routine
a_x = [1 1 1 1 1 1];
method_LD = UPTmethod('Method','LINEARIZED_DYNAMICS', 'UncertainStates', a_x, ...

'CovarianceMatrix', Cov);
% Propagate the initial uncertainties by UPTrun routine
tic;
[[UPToutput_LD, UPTinput_LD] = UPTrun('Model', model_R2BP, 'Method', method_LD);
computationalime.LD = toc;
COV_LD = UPToutput_LD.finalcov; % Extract the covariance matrix
mean_LD = UPToutput_LD.finalmean;

22/09/2015

Uncertainty Propagation Tool
Example: Interplanetary Satellite

 EX. 4: Compute the final covariance matrix through the Linearized Dynamics
method (referred to as LD) and compare the results with those obtained by
DAMC-G1, DAMC-G3, and sMC. The same initial Gaussian distribution of
EX. 1 is used. The uncertainties are propagated through the two-body
dynamics.

22/09/2015

Uncertainty Propagation Tool
Example: Interplanetary Satellite

 EX. 5: Change the dynamical model for the uncertainties propagation from
2BP to N-body. A new Gaussian distribution is generated with the same
covariance of EX. 1. Perform a DAMC-G3 simulation.

22/09/2015

Uncertainty Propagation Tool
Example: Interplanetary Satellite

 EX. 5: Change the dynamical model for the uncertainties propagation from
2BP to N-body. A new Gaussian distribution is generated with the same
covariance of EX. 1. Perform a DAMC-G3 simulation.

% Define the dynamical model by UPTmodel routine
model_NBP = UPTmodel('Model', 'NBODY', 'MainAttractor', 'SUN', 'InitialState', state, ...

'Coordinate', 'RECTANGULAR', 'Frame', 'ECLIPJ2000', 'FrameCenter', 'SUN', ...
'InitialEpoch', t0, 'FinalEpoch', tf, 'LengthUnits', 'AU', ...
'TimeUnits', 'DAY', 'AngleUnits', 'RAD', 'Tolerance',1e-12);

% Define the uncertainty propagation method by UPTmethod routine
a_x = [1 1 1 1 1 1]; nsample = 1e5; order = 3;
method_DAMCG3 = UPTmethod('Method', 'DAMC', 'Distribution',‘GAUSSIAN',...

‘CovarianceMatrix', Cov ,'UncertainStates', a_x,...
'Samples', nsamples, 'Order', order);

% Propagate the initial uncertainties by UPTrun routine
UPToutput_DAMCG3 = UPTrun('Model', model_NBP, 'Method', method_DAMCG3);
xf_distr_DAMCG3 = UPToutput_DAMCG3.xf_distr;
x0_distr_DAMCG = UPToutput_DAMCG3.x0_distr;
LB0_DAMCG = min(x0_distr_DAMCG,[],2);
UB0_DAMCG = max(x0_distr_DAMCG,[],2);
COV_DAMCG3 = UPToutput_DAMCG3.finalcov;
mean_DAMCG3 = UPToutput_DAMCG3.finalmean;

22/09/2015

Uncertainty Propagation Tool
Example: Interplanetary Satellite

 EX. 5: Change the dynamical model for the uncertainties propagation from
2BP to N-body. A new Gaussian distribution is generated with the same
covariance of EX. 1. Perform a DAMC-G3 simulation.

22/09/2015

Uncertainty Propagation Tool
Example: Interplanetary Satellite

 EX. 6: Generate an uniform initial distribution of samples (through standard
Matlab routine) and propagate it through the N-body dynamics. The interval
for each uncertain state is determined computing the max and min limits of
distribution defined in EX. 5. Perform a DAMC-U3 simulation.

22/09/2015

Uncertainty Propagation Tool
Example: Interplanetary Satellite

% Generate a new uniform distribution using standard Matlab routine
nsamples = method_DAMCG3.samples;
samples = unifrnd(-1,1,nsamples,6);
sigma_x = abs(UB0_DAMCG-LB0_DAMCG)/2;
for i = 1:size(sigma_x,1)

x0_distr_DAMCU(i,:) = state(i) + samples(:,i)'*sigma_x(i);
end
% Run the UPTeval routine
tic
[xf_distr_DAMCU3,x0_distr_DAMCU] = UPTeval(UPToutput_DAMCG3,x0_distr_DAMCU,nsamples);
computationalTime.DAMCU3 = toc;
LBf_DAMCU3 = min(xf_distr_DAMCU3,[],2);
UBf_DAMCU3 = max(xf_distr_DAMCU3,[],2);
LB0_DAMCU3 = min(x0_distr_DAMCU,[],2);
UB0_DAMCU3 = max(x0_distr_DAMCU,[],2);

 EX. 6: Generate an uniform initial distribution of samples (through standard
Matlab routine) and propagate it through the N-body dynamics. The interval
for each uncertain state is determined computing the max and min limits of
distribution defined in EX. 5. Perform a DAMC-U3 simulation.

22/09/2015

Uncertainty Propagation Tool
Example: Interplanetary Satellite

 EX. 6: Generate an uniform initial distribution of samples (through standard
Matlab routine) and propagate it through the N-body dynamics. The interval
for each uncertain state is determined computing the max and min limits of
distribution defined in EX. 5. Perform a DAMC-U3 simulation.

22/09/2015

Uncertainty Propagation Tool
Example: Interplanetary Satellite

 EX. 7: Compute the final upper and lower bounders (approximation) through
the Polynomial Bounder method (referred to as PB) and compare the results
with those obtained by DAMC-U3. The same interval for each uncertain state
defined in EX. 6 is used. The N-body dynamics is used for PB simulation.

22/09/2015

Uncertainty Propagation Tool
Example: Interplanetary Satellite

 EX. 7: Compute the final upper and lower bounders (approximation) through
the Polynomial Bounder method (referred to as PB) and compare the results
with those obtained by DAMC-U3. The same interval for each uncertain state
defined in EX. 6 is used here. The N-body dynamics is used for PB simulation.

% Define the uncertainty propagation method by UPTmethod routine
IntervalState = abs(UB0_DAMCU3’-LB0_DAMCU3’)/2;
nsamples = 1e5; % N° of sample
order = 3; % Taylor expansion order = 3
method_PB = UPTmethod('Method', 'POLYNOMIAL_BOUNDER', 'Order', order, ...

'UncertainStates', a_x, 'IntervalStates',IntervalState);
% Propagate the initial uncertainties by UPTrun routine
[UPToutput_PB, UPTinput_PB] = UPTrun('Model', model_NBP, 'Method', method_PB);
UBf_PB = UPToutput_PB.bounds.ub;
LBf_PB = UPToutput_PB.bounds.lb;

22/09/2015

Uncertainty Propagation Tool
Example: Interplanetary Satellite

 EX. 7: Compute the final upper and lower bounders (approximation) through
the Polynomial Bounder method (referred to as PB) and compare the results
with those obtained by DAMC-U3. The same interval for each uncertain state
defined in EX. 6 is used here. The N-body dynamics is used for PB simulation.

22/09/2015

DA Comutational Engine
Overview

 DACE
o Each DA routine approximates the result of an operation by its Taylor expansion

around 0
o After each operation one obtains an approximation, yielding eventually to the Taylor

expansion of arbitrarily complex expressions
o The DACE provides a user interface to use the DA routine such that

1. It allows writing mathematical expressions in typical computer programming
way

2. It allows evaluating them using DA and double precision numbers

The DA Computational Engine (DACE) is an implementation of
the basic DA routines

22/09/2015

DA Comutational Engine
General Archtecture

 DACE Architecture Design
o DA core routines implemented in Fortran 95
o Powerful C++ interface directly to Fortran 95 routines
o MATLAB interface directly to Fortran 95 routines (beta version)

DACE Language Interfaces

DACE Core routines (Fortran 95)

DACE MATLAB
interface

DA Computational Engine (DACE)

DACE C++
interface

22/09/2015

DA Comutational Engine
General Archtecture

 DACE Architecture Design
o DA core routines implemented in Fortran 95
o Powerful C++ interface directly to Fortran 95 routines
o MATLAB interface directly to Fortran 95 routines (beta version)

DACE Language Interfaces

DACE Core routines (Fortran 95)

DACE MATLAB
interface

DA Computational Engine (DACE)

DACE C++
interface

 KDevelop Project (ESA_WORKSHOP)
 Modify CMakeLists.txt to add DACE Library

DA Comutational Engine
Before Starting...

 Bootable USB keys
 Complete Linux Development environment
 Dace Library already included

include_directories(.)
find_library(DACE_LIBRARY dace PATHS .)
add_executable(exe1 main1.cpp)
target_link_libraries(exe1 ${DACE_LIBRARY})

 Include the DA header
#include <DA/dace.h>
#include <iostream>
#include <cmath>
#include <fstream>
#include <iomanip>
using namespace std;
using namespace DACE;

22/09/2015

22/09/2015

 What will we do??
 Use the DACE to compute Taylor expansion of following single variable

functions
 EX. 1: around
 EX. 2: ଶ ଶ around
 EX. 3: ௗ

ௗ௫ around
 Use the DACE to compute Taylor expansion of following multivariable

functions
 EX. 4: Sombrero function around
 EX. 5: Sombrero function around
 EX. 6 - 7: Gradient of sombrero function around

DA Comutational Engine
Exercises Summary

 EX. 1:

DA Comutational Engine
Single Variable Function

1. Initialize DACE to perform 20-th order computations

3. Compute

4. Print to screen

DA::init(20, 1);

DA x = DA(1);

DA y = sin(x);

cout << "x" << endl << x << endl;
cout << "sin(x)" << endl << sin(x);

2. Initialize as a DA number

22/09/2015

 EX. 1:
 Compare with analytical Taylor expansion

DA Comutational Engine
Single Variable Function

௬ ஶ
ୀ

 ଶାଵஶ
ୀ

 ଶ ସ

 ଶ ସ
ଵ

ଷ
ହ

22/09/2015

 EX. 2:

DA Comutational Engine
Single Variable Function

1. Initialize DACE to perform 20-th order computations
Verify that ଶ ଶ

3. Compute

4. Print to screen

DA::init(20, 1);

DA x = DA(1);

DA y = sin(x);

cout << “sin(x)^2+cos(x)^2 << endl;
Cout << y1 + y2 << endl;

3. Compute
DA x = DA(1);

DA y1 = sqr(sin(x));
DA y2 = sqr(cos(x));

2. Initialize as a DA number

22/09/2015

 EX. 3:

DA Comutational Engine
Single Variable Function

1. Initialize DACE to perform 20-th order computations in one variable
Compute ௗ

ௗ௫

4. Print to screen

DA::init(20, 1);

DA x = DA(1);

3. Compute ௗ
ௗ௫

DA x = DA(1);
DA y = sin(x);

DA dy = y.deriv(1);

2. Initialize as a DA number and compute

cout << "d[sin(x)]/dx" << endl << dy << endl;
cout << "cos(x)" << endl << cos(x) << endl;

5. Verify that it is equal to (find the difference and explain)
22/09/2015

 EX. 3:

DA Comutational Engine
Single Variable Function

1. Initialize DACE to perform 20-th order computations in one variable
Compute ௗ

ௗ௫

4. Print to screen

DA::init(20, 1);

DA x = DA(1);

3. Compute ௗ
ௗ௫

DA x = DA(1);
DA y = sin(x);

DA dy = y.deriv(1);

2. Initialize as a DA number and compute

cout << "d[sin(x)]/dx" << endl << dy << endl;
cout << "cos(x)" << endl << cos(x) << endl;

5. Verify that it is equal to (find the difference and explain)

Note that the integral of function
can be easly computed through the DACE (→ y.integ(1))

22/09/2015

 EX. 4:

DA Comutational Engine
Multivariate Function

1. Initialize DACE to perform 10-th order computations in 2 variables
Sombrero Function: ଵଶ ଶଶ ଵଶ ଶଶ

DA::init(10, 2);

AlgebraicVector<DA> x(2);
x[0] = DA(1);
x[1] = DA(2);

2. Initialize as a two-dimensional vector of DA numbers (Taylor expansion
around the point)

3. Evaluate sombrero function
DA z = somb(x);
cout << “Sombrero Function” << endl;
cout << z << endl;

22/09/2015

 EX. 5:

DA Comutational Engine
Multivariate Function

1. Initialize DACE to perform 10-th order computations in 2 variables
Sombrero Function: ଵଶ ଶଶ ଵଶ ଶଶ

DA::init(10, 2);

AlgebraicVector<DA> x(2);
x[0] = 2.0 + DA(1);
x[1] = 3.0 + DA(2);

2. Initialize as a two-dimensional vector of DA numbers (Taylor expansion
around the point)

3. Evaluate sombrero function
DA z = somb(x);
cout << “Sombrero Function” << endl;
cout << z << endl;

22/09/2015

 EX. 6:

DA Comutational Engine
Multivariate Function

1. Initialize DACE to perform 1-st order computations in 2 variables
Gradient of sombrero function

DA::init(1, 2);
2. Compute the 1-st order Taylor expansion of the sombrero function around

the point (See EX.5)
3. Compute the gradient sombrero function around the point

AlgebraicVector<DA> grad_z(2);
grad_z = z.gradient();

4. Verify that the obtained result is equal to the aalytical solution, that is
cout << "Grad. of sombrero function" << endl;
cout << grad_z << endl;

࢞ࣔ ൗ࢟ࣔ ൌ െ. ૡૡૡ
ࢠࣔ ൗ࢟ࣔ ൌ െ. ૠૠૠૢ
࢞ࣔ ൗ࢟ࣔ ൌ െ. ૡૡૡ
ࢠࣔ ൗ࢟ࣔ ൌ െ. ૠૠૠૢ

22/09/2015

 EX. 7:

DA Comutational Engine
Multivariate Function

1. Initialize DACE to perform 5-th order computations in 2 variables
Gradient of sombrero function

DA::init(5, 2);
2. Compute the 5-th order Taylor expansion of the sombrero function around

the point (See EX. 5)
3. Compute the gradient sombrero function around the point

AlgebraicVector<DA> grad_z(2);
grad_z = z.gradient();

4. Verify that the obtained result is equal to the aalytical solution, that is
cout << "Grad. of sombrero function" << endl;
cout << grad_z << endl;

22/09/2015

DINAMICA srl
Registered Office:

Piazza della Repubblica, 10 - 20121 - Milano (Italy)
Operational Headquarters:

Via Morghen, 13 - 20156 - Milano (Italy)
Phone +39 02 8342 2930

Fax +39 02 3206 6679
e-mail: dinamica@dinamicatech.com

website: www.dinamicatech.com

DAST: Nonlinear Uncertainty
Propagation using Differential
Algebra
Hands-on Demo Session
22nd September 2015

