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JINANMICA Uncertainty Propagation Tool
&i‘iesa General Architecture

The purpose of the UPT is to allow users to perform uncertainty
propagations, based on Taylor differential algebra, directly within
MATLAB.

1 UPT Architecture Design

Uncertainty Propagation Tool (UPT)

o UPT Interface Function: interface between UPT Interface Function
Matlab and UPT. l

o UPT MEX Core Routine: to set up the DA
environment and perform DA propagation
(interface with SF routines) l

UPT MEX core routine —» Software Framework (SF)

UPT Analysis Function
Gaussian | Uniform | STM

o UPT Analysis Function: to perform the

required analyses on the results. l
o UPT Output Function: to easily handle the UPT Output function
results.
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JINAMICA Uncertainty Propagation Tool
Q&Uk\&

¢-esa Matlab Routine

UPTmodel The user must provide a Matlab structure (model
Matlab function for dynamical model structure) containing all information for the setup
definition of the dynamical model
model = UPTmodel ('paraml',valuel, '"param2', value2,...);
UPTmethod The user must provide a Matlab structure (method
Matlab function for propagation method structure) containing all information for the setup of
definition the uncertainty propagation method

method = UPTmethod ('paraml',valuel, "param2',value2, ...);

Once the method and model structures are defined,
UPTrun th tart the simulation using the routi
MEX file to perform DA propagations e user can start the simulation using the routine
UPTrun
[UPToutput, UPTinput] = UPTrun ('Model',model, 'Method',method) ;
UPTeval The user must provide the information on the
Matlab function to be used for additional covariance (or state interval), the sample distribution
evaluations of the final DA map and number of samples

[xf distr,x0 distr,p0 distr] = UPTeval (UPToutput, ...

. . . . B - 'Bistribution ', nsamples) ;
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JINAMICA Uncertainty Propagation Tool
g-esa Matlab Routine

UPTmodel The user must provide a Matlab structure (model
Matlab function for dynamical model structure) containing all information for the setup
definition of the dynamical model
' model = UPTmodel ('paraml',valuel, '"param2', value2,...);
UPTmethod The user must provide a Matlab structure (method
Matlab function for propagation method structure) containing all information for the setup of
definition the uncertainty propagation method

method = UPTmethod ('paraml',valuel, "param2',value2, ...);

Once the method and model structures are defined,

UPTrun th tart the simulati ing the routi

MEX file to perform DA propagations e user can start the simulation using the routine

UPTrun

' [UPToutput, UPTinput] = UPTrun ('Model',model, 'Method',method) ;

UPTeval The user must provide the information on the

Matlab function to be used for additional covariance (or state interval), the sample distribution
evaluations of the final DA map and number of samples
[xf distr,x0 distr,p0 distr] = UPTeval (UPToutput, ...

. . . . 'Distribution',nsamples) ;
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JINANMICA Uncertainty Propagation Tool

Matlab Routine

Let’s see how it works with a simple example...
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JINAMICA Uncertainty Propagation Tool
&iﬁ?esa Example: Interplanetary Satellite

Let us consider an interplanetary satellite. Given an uncertainty on the initial
state vector, the UPT serves the purpose of determining the statistics at final
instant time, t;

O Initial State & Simulation Epochs

Orbital Parameter Cartesian State

Inclination [ded] 0 Y [AU] 0

Argument of perigee [deg] 0 Vx [AU/day] 0

True anomaly [deg] 0 Vz [AU/day] 0
to = 2009 — 06 — 17T00: 00: 00’ ety = 2.984688661844962¢ + 08 sec
tr ='2010— 03 — 17T00: 00: 00’ ety = 3.220560661855782¢ + 08 sec
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e, .
&gesa Example: Interplanetary Satellite
J Two-Body Dynamical Model
Nominal Orbit
181 RaTh ety = 2.984688661844962¢ + 08 sec
16l Initial Position ety = 3.220560661855782¢ + 08 sec
e—— + SUN
14 F St =S
/// i '
s i i . Cartesian State
1t/ R
= \ O oXxp@u 112
< 081 \ Y [AU 0
= ool \ [AU]
\
%41 \ Vx [AU/day]
0.2 \
0 T ’ Vz [AU/day]
02
-1I.5 -1 -01.5 (; 0?5 1l
X[AU] Uncertainties on initial state
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JINANMICA Uncertainty Propagation Tool
¢-esa Exercises Summary

J What will we do??

O Given the uncertainties on initial state, we compute the statistics at tr

using the DA-based Monte Carlo Simulation method
O EX. 1-2: Gaussian Initial Distribution / Two-body Model / Order 1
O EX. 3: Gaussian Initial Distribution / Two-body Model / Order 3
O EX. 5: Gaussian Initial Distribution / N-body Model / Order 3
O EX. 6: Uniform Initial Distribution / N-body Model / Order 3

O Given the uncertainties on initial state, we compute the statistics at ¢,

using the Linearized Dynamics method
O EX. 4: Gaussian Initial Distribution / Two-body Model

O Given the uncertainties on initial state, we determine the upper and lower
bounders of final uncertainties using Polynomial Bounder method
O EX. 7: Uniform Initial Distribution / N-body Model / Order 3
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JINAMICA Uncertainty Propagation Tool

&;esa Before Starting...

- Matlab
- Open Matlab

1 Change the current folder to Workshop in the address field of the current
folder toolbar of Matlab

o iz Open Varistle ~ {7 Run and Time ; [y SetPath 3 Request Support
Workspace |/ Clear w4 Clear ~ Loray v [[l] Paratel ~ ~  &EAdG-Ons v
Cof

=4 o | (5 Fid Fies JL ua Lig; New Variable | Analyze Code .ﬂ‘ © (2 ¢3¢
Ne New (1= Say

Browser

.: 4\ Select a new folder X
Click on 5 v 4 « examples > Workshop v 0 Cerca in Workshop r
Explorer button

Cartella: | Workshop

Selezione cartella Annulla
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JINAMICA Uncertainty Propagation Tool
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- Matlab
- Open Matlab

1 Change the current folder to Workshop in the address field of the current
folder toolbar of Matlab

4\ MATLAB R2015a

A Co - ] Find Fios i Ha Uiz, New Variable |&7 Analyze Code m E {0) Preferences w (*§ Community
{17 Open Variable ¥ %7 Run and Time _ (-} Set Path = Request Support
New New Open | L=/ Compare Import Save - - Simulink Layout Help
Script ¥ v . Data Workspace [’y Clear Workspace ¥ |’/ Clear Commands v  Library = WPamhlv > *Md—Omv
‘ F VATAELE CoCE SIMOLITN BTV IO RESOURCES
<P HEA [L » C: » Users » pucci » Documents P Lavoro P DinamicaUPT-WIN-1.2 » DinamicaUPT » examples » Workshop ]
Fx >>

Workspace Current Folder
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JINANMICA Uncertainty Propagation Tool
7o@sa Before Starting...

1 Matlab

1 Add the lib, matlab, examples, and Workshop folders (included in the
DinamicaUPT) to Matlab path.

% Add needed path for UPT
DinamicaUPT folder = pwd;

addpath
addpath
addpath
addpath

fullfile (DinamicaUPT folder, 'matlab'));

fullfile (DinamicaUPT folder, 'lib'));

fullfile (DinamicaUPT folder, 'examples'));

fullfile (DinamicaUPT folder, 'examples', 'Workshop'));

o~ o~ o~ o~

warning off

1 Change the current folder to run folder in the address field of the current
folder toolbar of Matlab

cd (fullfile(pwd, 'run'));

Run the UPTpath.m

22/09/2015
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JINAMICA Uncertainty Propagation Tool

¢-=esa Example: Interplanetary Satellite

 Initial State & Simulation Epochs

J Run the InitialState.m to set the initial nominal conditions and simulation
interval or type the following script in Matlab command window

% Initial State
state = [1.1200, 0O, O, O, 0.018532930835363, 0];

% Initial epoch: t0 = '2009-06-17T00:00:00"';
et0 = 2.984688661844962e+08;

% Final epoch: tf = '2010-03-17T00:00:00";
etf = 3.220560661855782e+08;

dt _sec = etf - etO;

Cartesian State

Y [AU] 0

ety = 2.984688661844962¢ + 08 sec
Vx [AU/day] 0 ety = 3.220560661855782¢ + 08 sec

Vz [AU/day] 0
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JINANMICA Uncertainty Propagation Tool
&&;esa Example: Interplanetary Satellite

O EX. 1: Perform a DA-based Monte Carlo Simulation assuming an expansion
order equal to 1 (referred to as DAMC-G1). A Gaussian distribution is
considered for each initial state (the covariance matrix Cov must be defined).
The uncertainties are propagate through the two-body dynamics.

COU —_ dlag([o-xx; O-_'yy y 077, O-xxr O-_’y_’y' O-ZZ])
Oxy = O'yy = 0,;, = le — 04
Oxy = O'yy = O0;; = le — 10

% Covariance Matrix
Cov = diag([le-4*ones(1l,3), le-10*ones(1,3)1);

22/09/2015
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JINAMICA Uncertainty Propagation Tool
&&Lesa Example: Interplanetary Satellite

O EX. 1: Perform a DA-based Monte Carlo Simulation assuming an expansion
order equal to 1 (referred to as DAMC-G1). A Gaussian distribution is
considered for each initial state (the covariance matrix Cov must be defined).
The uncertainties are propagated through the two-body dynamics.

% Define the dynamical model by UPTmodel routine

model R2BP = UPTmodel ('Model', 'R2BP', 'MainAttractor', 'SUN', 'InitialState',6 state,
'Coordinate', 'RECTANGULAR', 'Frame', 'ECLIPJ2000', 'FrameCenter',6 'SUN',
'InitialEpoch', t0, 'FinalEpoch', tf, 'LengthUnits', 'AU',
'TimeUnits', 'DAY', 'AngleUnits', 'RAD', 'Tolerance',6le-12);

% Define Covariance Matrix

Cov = diag([le-4*ones(1l,3),1le-10*ones (1,3)1);

% Define the uncertainty propagation method by UPTmethod routine

a x = [1 1111 1]; nsample = 1leb; order = 1;

method DAMCGI1 = UPTmethod('Method', 'DAMC', 'Distribution', '"GAUSSIAN', ...

'CovarianceMatrix', Cov, 'UncertainStates', a x, 'Samples', nsamples,...
'Order', order);

% Propagate the initial uncertainties by UPTrun routine

[UPToutput DAMCG1l, UPTinput DAMCG1l] = UPTrun( 'Model', model R2BP, 'Method', method DAMCGI);

x0 distr DAMCG = UPToutput DAMCG1l.x0 distr;

xf distr DAMCGL UPToutput DAMCGIl.xf distr;

LBO DAMCG = min(x0 distr DAMCG, [],2);
UBO DAMCG = max(x0 _distr DAMCG, [1,2);
COV_DAMCG1 = UPToutput DAMCGl.finalcov;

UPToutput DAMCGI.finalmean;

I mean DAMCGL
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JINANMICA Uncertainty Propagation Tool
&&;esa Example: Interplanetary Satellite

O EX. 1: Perform a DA-based Monte Carlo Simulation assuming an expansion
order equal to 1 (referred to as DAMC-G1). A Gaussian distribution is
considered for each initial state (the covariance matrix Cov must be defined).
The uncertainties are propagated through the two-body dynamics.

R2BP
Initial Distribution of Samples (GAUSSIAN DISTRIBUTION) R2BP
N° Sample = 100000 Final Distribution of Samples (GAUSSIAN DISTRIBUTION)
N° Sample = 100000; Order = 1

0.05 -

Y [AU] vt Sl X [AU]

[ TpaMC-G1 = 0.186 sec J
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JINANMICA Uncertainty Propagation Tool

roesa Example: Interplanetary Satellite
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O EX. 1: Perform a DA-based Monte Carlo Simulation assuming an expansion
order equal to 1 (referred to as DAMC-G1). A Gaussian distribution is
considered for each initial state (the covariance matrix Cov must be defined).
The uncertainties are propagated through the two-body dynamics.

R2BP

Samples Box at t) and t (GAUSSIAN DISTRIBUTION) R2BP
N SESample= Wosm Qe ——— Final Distribution of Samples (GAUSSIAN DISTRIBUTION)
Initial Position N° Sample = 100000; Order =1
+ SUN
+ DAMC-G1
e
25¢f
0.1 5
of
0.05
N
1 -0.05 4
0.1 3
05F \ 1:5
1 -1.7
N + i -1.75
0.5 18
15 1 0.5 0 05 1 Y [AU] 0 1.85 X [AU]

X [AU]
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JINAMICA Uncertainty Propagation Tool
&&&;\Eesa Example: Interplanetary Satellite

O EX. 2: Compare DAMC-G1 results with Standard Monte Carlo (referred to as
sMC) ones. The same initial Gaussian distribution of EX. 1 is used. The
uncertainties are propagated through the two-body dynamics.

22/09/2015
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JINANMICA Uncertainty Propagation Tool
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O EX. 2: Compare DAMC-G1 results with Standard Monte Carlo (referred to as
sMC) ones. The same initial Gaussian distribution of EX. 1 is used. The
uncertainties are propagated through the two-body dynamics.

% Standard Monte Carlo Simulation
xf sMC = zeros(6,size(x0 distr DAMCG,2));
tic
for i = 1l:size(x0_distr DAMCG, 2)
% Solve the Kepler Equation
[r, v] = keplerUniversal (x0 distr DAMCG(1:3,1i)*AU, x0 distr DAMCG(4:6,1)*AU/day,dt sec,mu);
xf sMC(1:3,1) = r/AU;
xf sMC (4:6,1) = v*day/AU;
end
computational time.sMC = toc;
COV_sMC = cov(xf sMC'");
mean sMC = mean (xf sMC, 2);

(=

22/09/2015
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INNOVATING TECHNOLOGY

Uncertainty Propagation Tool

g-esa Example: Interplanetary Satellite
O EX. 2: Compare DAMC-G1 results with Standard Monte Carlo (referred to as
sMC) ones. The same initial Gaussian distribution of EX. 1 is used. The
uncertainties are propagated through the two-body dynamics.
R2BP
Final Distribution of Samples (GAUSSIAN DISTRIBUTION)
N° Sample = 100000; Order =1
X  DAMC-G1 e
8w o sMee Ermax = Max([[*pamc— = Tsme—cll) =\
0.065747 [AU]
L Eymax = Ma (lvpamec-  —Vsme 1D
= AU
<, 0 = 7.581394¢ — 04[@]
N
-0.05 \ J
o ( TpAMC-G1 = 0.186 [SeC] )

-0
‘U\_a
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JINAMICA Uncertainty Propagation Tool
&&&;\Eesa Example: Interplanetary Satellite

O EX. 3: Perform a DAMC-G3 simulation and compare with sMC. The same
initial Gaussian distribution of EX. 1 is used. The uncertainties are propagated
through the two-body dynamics.

22/09/2015
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JINANMICA Uncertainty Propagation Tool

\\&‘&;esa Example: Interplanetary Satellite
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O EX. 3: Perform a DAMC-G3 simulation and compare with sMC. The same
initial Gaussian distribution of EX. 1 is used. The uncertainties are propagated
through the two-body dynamics.

% Define the uncertainty propagation method by UPTmethod routine
a_x = [1 1111 1]; nsample = 1leb; order = 3;
method DAMCG3 = UPTmethod('Method', 'DAMC', 'Distribution', '"GAUSSIAN', ...
'CovarianceMatrix', Cov, 'UncertainStates', a x,'Samples', lel, ...
'Order', order);

% Propagate the initial uncertainties by UPTrun routine

tlieg
[UPToutput DAMCG3, UPTinput DAMCG3] = UPTrun( 'Model', model R2BP, 'Method', method DAMCG3);
[ xf distr DAMCG3 ] = UPTeval( UPToutput DAMCG3, x0 distr DAMCG, nsample );

computationalime.DAMCG3 = toc;

COV_DAMCG3 = cov(xf distr DAMCG3');
mean DAMCG3 mean (xf distr DAMCG3, 2) ;

(=
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JINAMICA Uncertainty Propagation Tool
‘&*esa Example: Interplanetary Satellite
O EX. 3: Perform a DAMC-G3 simulation and compare with sMC. The same
initial Gaussian distribution of EX. 1 is used. The uncertainties are propagated
through the two-body dynamics.
R2BP
Final Distribution of Samples (GAUSSIAN DISTRIBUTION)
N° Sample = 10; Order = 3
X DAMC-G3
O sMC-G /
el Ermax = Max(|Tpamc-  — Tsme—cl) =\
ot | 0.001574[AU]
E_ | Eymax = max(||Vpamc-63 — Vsmc—cl)
2 o AU
5 = 2.689792¢ — 05 [-—]
0.05 4 \ ay J
014 4 N
15 TpAMC-G3 = 0.482 [SeC
1 sl Tomc—c = 38.11 [sec] )
0.5 -1.75
-18
Y [AU] il X [AU]
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JINANMICA Uncertainty Propagation Tool
&W €Sd Example: Interplanetary Satellite

O EX. 4: Compute the final covariance matrix through the Linearized Dynamics
method (referred to as LD) and compare the results with those obtained by
DAMC-G1, DAMC-G3, and sMC. The same initial Gaussian distribution of

EX. 1 is used. The uncertainties are propagated through the two-body
dynamics.

22/09/2015
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JINAMICA Uncertainty Propagation Tool
g-esa Example: Interplanetary Satellite
O EX. 4: Compute the final covariance matrix through the Linearized Dynamics
method (referred to as LD) and compare the results with those obtained by
DAMC-G1, DAMC-G3, and sMC. The same initial Gaussian distribution of
EX. 1 is used. The uncertainties are propagated through the two-body
dynamics.
% Define the uncertainty propagation method by UPTmethod routine
a_x = [111111];

method LD = UPTmethod('Method', 'LINEARIZED DYNAMICS', 'UncertainStates',6 a_ x,
'CovarianceMatrix', Cov);

% Propagate the initial uncertainties by UPTrun routine

tic;

[ [UPToutput LD, UPTinput LD] = UPTrun( 'Model', model R2BP, 'Method', method LD );
computationalime.LD = toc;

COV_LD = UPToutput LD.finalcov; % Extract the covariance matrix

mean LD = UPToutput LD.finalmean;

(=
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JINAMICA Uncertainty Propagation Tool
&%esa Example: Interplanetary Satellite

O EX. 4: Compute the final covariance matrix through the Linearized Dynamics
method (referred to as LD) and compare the results with those obtained by
DAMC-G1, DAMC-G3, and sMC. The same initial Gaussian distribution of
EX. 1 is used. The uncertainties are propagated through the two-body

dynamics.

NBODY
3D Distribution
N° Sample = 100000

I Linearized Dyn.

I OAMC-G1
0.05 ~ I DAMC-G3
I sMC-G

Z [km]

-0.05 >

-1.72
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JINAMICA Uncertainty Propagation Tool
&&Eesa Example: Interplanetary Satellite

O EX. 5: Change the dynamical model for the uncertainties propagation from
2BP to N-body. A new Gaussian distribution is generated with the same
covariance of EX. 1. Perform a DAMC-G3 simulation.

22/09/2015
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JINAMICA Uncertainty Propagation Tool
&iesa Example: Interplanetary Satellite

O EX. 5: Change the dynamical model for the uncertainties propagation from
2BP to N-body. A new Gaussian distribution is generated with the same
covariance of EX. 1. Perform a DAMC-G3 simulation.

% Define the dynamical model by UPTmodel routine

model NBP = UPTmodel ('Model', 'NBODY', 'MainAttractor', 'SUN', 'InitialState', state,
'Coordinate', 'RECTANGULAR', 'Frame', 'ECLIPJ2000', 'FrameCenter',6K 'SUN',
'InitialEpoch', t0, 'FinalEpoch', tf, 'LengthUnits', 'AU',
'TimeUnits', 'DAY', 'AngleUnits', 'RAD', 'Tolerance',le-12);

% Define the uncertainty propagation method by UPTmethod routine

a x = [1 1111 1]; nsample = 1le5; order = 3;

method DAMCG3 = UPTmethod('Method', 'DAMC', 'Distribution', ‘GAUSSIAN',...
‘CovarianceMatrix', Cov , 'UncertainStates', a x,...
'Samples', nsamples, 'Order', order);

% Propagate the initial uncertainties by UPTrun routine
UPToutput DAMCG3 = UPTrun( 'Model', model NBP, 'Method', method DAMCG3) ;

xf distr DAMCG3
x0 distr DAMCG

UPToutput DAMCG3.xf distr;
UPToutput DAMCG3.x0 distr;

LBO DAMCG = min(x0 distr DAMCG, [1,2);
UBO DAMCG = max (x0 distr DAMCG, [1,2);
COV_DAMCG3 = UPToutput DAMCG3.finalcov;

mean DAMCG3

TrL

22/09/2015
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&E esa Example: Interplanetary Satellite
O EX. 5: Change the dynamical model for the uncertainties propagation from
2BP to N-body. A new Gaussian distribution is generated with the same
covariance of EX. 1. Perform a DAMC-G3 simulation.
NBODY
Initial Distribution of Samples (GAUSSIAN DISTRIBUTION) R NBODY
N° Sample = 100000 Final Distribution of Samples (GAUSSIAN DISTRIBUTION)

N° Sample = 100000; Order =3

[_x__sampes] W
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JINAMICA Uncertainty Propagation Tool
&Mi €Sd Example: Interplanetary Satellite

O EX. 6: Generate an uniform initial distribution of samples (through standard
Matlab routine) and propagate it through the N-body dynamics. The interval
for each uncertain state is determined computing the max and min limits of
distribution defined in EX. 5. Perform a DAMC-U3 simulation.

22/09/2015
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Uncertainty Propagation Tool
Example: Interplanetary Satellite

O EX. 6: Generate an uniform initial distribution of samples (through standard
Matlab routine) and propagate it through the N-body dynamics. The interval
for each uncertain state is determined computing the max and min limits of
distribution defined in EX. 5. Perform a DAMC-U3 simulation.

% Generate a new uniform distribution using standard Matlab routine
nsamples = method DAMCG3.samples;

samples =
sigma x =

x0 distr DAMCU (i, :

end

unifrnd(-1,1,nsamples, 6);
abs (UBO_DAMCG-LBO_ DAMCG) /2;
for 1 = l:size(sigma x,1)

% Run the UPTeval routine

tic

) = state(i) + samples(:,1) '*sigma x(i);

[xf distr DAMCU3,x0 distr DAMCU] = UPTeval (UPToutput DAMCG3,x0 distr DAMCU,nsamples) ;
computationalTime.DAMCU3 = toc;

LBf DAMCU3
UBf DAMCU3
LBO_DAMCU3
UBO_DAMCU3

22/09/2015
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max
min
max

xf distr DAMCUS3,
xf distr DAMCUS3,
x0 distr DAMCU, [

[]
[]
1y
x0 distr DAMCU, [],

o~ o~ o~ o~

2
2

2);
2);
) ;
) ;
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INNOVATING TECHNOLOGY

2@Sa Example: Interplanetary Satellite
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O EX. 6: Generate an uniform initial distribution of samples (through standard
Matlab routine) and propagate it through the N-body dynamics. The interval
for each uncertain state is determined computing the max and min limits of
distribution defined in EX. 5. Perform a DAMC-U3 simulation.

NBODY e
Initial Distribution of Samples (UNIFORM DISTRIBUTION) Final Distribution of Samples (UNIFORM DISTRIBUTION)
NrSmple:= 100000 Order =) N° Sample = 100000; Order = 3

[ : -m’l_e_s} b4 DAMC-U3

0.05 -

Z [AU]
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JINAMICA Uncertainty Propagation Tool
&Mi €Sd Example: Interplanetary Satellite

O EX. 7: Compute the final upper and lower bounders (approximation) through
the Polynomial Bounder method (referred to as PB) and compare the results
with those obtained by DAMC-U3. The same interval for each uncertain state
defined in EX. 6 is used. The N-body dynamics is used for PB simulation.

22/09/2015
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JINAMICA Uncertainty Propagation Tool

&i‘;esa Example: Interplanetary Satellite

O EX. 7: Compute the final upper and lower bounders (approximation) through
the Polynomial Bounder method (referred to as PB) and compare the results
with those obtained by DAMC-U3. The same interval for each uncertain state
defined in EX. 6 is used here. The N-body dynamics is used for PB simulation.

% Define the uncertainty propagation method by UPTmethod routine

IntervalState = abs (UBO DAMCU3’-LBO DAMCU3')/2;

nsamples le5; % N° of sample

order 3g % Taylor expansion order = 3

method PB = UPTmethod('Method', 'POLYNOMIAL BOUNDER', 'Order', order,
'UncertainStates', a x, 'IntervalStates',6 IntervalState);

% Propagate the initial uncertainties by UPTrun routine
[UPToutput PB, UPTinput PB] = UPTrun( 'Model', model NBP, 'Method', method PB );

UBf PB
LBf PB

UPToutput PB.bounds.ub;
UPToutput PB.bounds.lb;

L
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JINAMICA Uncertainty Propagation Tool
L c Example: Interplanetary Satellite

O EX. 7: Compute the final upper and lower bounders (approximation) through
the Polynomial Bounder method (referred to as PB) and compare the results
with those obtained by DAMC-U3. The same interval for each uncertain state
defined in EX. 6 is used here. The N-body dynamics is used for PB simulation.

NBODY
Final Distribution of Samples (UNIFORM DISTRIBUTION)
N°® Sample = 100000; Order = 3

X DAMC-U3
B Min-Max Value
I P8 Box

1.5 -16

0.5 -1.8
Y [AU] 0 13 X [AU]
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JINAMICA DA Comutational Engine
&&&:esa Overview

The DA Computational Engine (DACE) is an implementation of
the basic DA routines

0 DACE
o Each DA routine approximates the result of an operation by its Taylor expansion
around 0

o After each operation one obtains an approximation, yielding eventually to the Taylor
expansion of arbitrarily complex expressions

o The DACE provides a user interface to use the DA routine such that

1. It allows writing mathematical expressions in typical computer programming
way

2. It allows evaluating them using DA and double precision numbers

22/09/2015



h’
JINAMCA

INNOVATING TECHNOLOGY

e
&

g

dcesa

=

&

=

1 DACE Architecture Design

DA Comutational Engine
General Archtecture

o DA core routines implemented in Fortran 95

o Powerful C++ interface directly to Fortran 95 routines

22/09/2015
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MATLAB interface directly to Fortran 95 routines (beta version)

(
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] Bootable USB keys
0 Complete Linux Development environment

(1 Dace Library already included
1 KDevelop Project (ESA_WORKSHOP)

L Modify CMakelLists.txt to add DACE Library

include directories(.)
find library (DACE LIBRARY dace PATHS .)

add executable (exel mainl.cpp)
target link libraries(exel $S{DACE LIBRARY})

J Include the DA header

#include <DA/dace.h>
#include <iostream>
#include <cmath>
#include <fstream>
#include <iomanip>

using namespace std;
using namespace DACE;
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J What will we do??

L Use the DACE to compute Taylor expansion of following single variable

functions
d EX 1: y = sin(x) around (0,0)
a EX. 2: y = sin®(x) + cos?(x) around (0,0)
Q EX. 3: dy = =~ (sin(x)) around (0,0)
0 Use the DACE to compute Taylor expansion of following multivariable
functions
O EX. 4: Sombrero function around (0,0)
O EX. 5: Sombrero function around (2,3)
0 EX.6-7: Gradient of sombrero function around (2,3)

22/09/2015



-
|/

JINAMICA DA Comutational Engine

&&%esa Single Variable Function
0 EX. 1: y = sin(x)

1. Initialize DACE to perform 20-th order computations

DA::init( 20, 1 );
2. Initialize x as a DA number
DA x = DA(1);

3. Compute

DA y = sin(x);

4. Print to screen

cout << "x" << endl << x << endl;
cout << "sin(x)" << endl << sin (x);
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&&%esa Single Variable Function

O EX. 1: y = sin(x)

= Compare with analytical Taylor expansion

T (x) — Zoo a.xi — zoo (——]-)jx2j+1
Y i=0 j=0(2j + D!

)

Ay =0y = Ag =+ =10
a, = 1
a; = —1/¢ = —0.166666 ...
as = 1/,,=0.0083 ...

_1 _
a; = /o4 = 0-00019841269841
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¢-esa Single Variable Function
O EX. 2: Verify that sin?(x) + cos?(x) = 1

1. Initialize DACE to perform 20-th order computations

DA::init( 20, 1 );
2. Initialize x as a DA number
DA x = DA (1) ;

3. Compute

DA yl1 = sgr(sin(x)):;
DA y2 = sqgr(cos(x));

4. Print to screen

cout << “sin (x)"*2+cos(x) "2 << endl;
Cout << yl + y2 << endl;
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&i‘;esa Single Variable Function
d EX. 3: Compute dy = % (sin(x))

1. Initialize DACE to perform 20-th order computations in one variable

DA::init ( 20, 1 );
2. Initialize x as a DA number and compute sin(x)

DA x = DA(1);
DA y = sin(x);

3. Compute dy = % (sin(x))
DA dy = y.deriv(1l);

4. Print to screen

cout << "d[sin(x)]/dx" << endl << dy << endl;
cout << "cos (x)" << endl << cos(x) << endl;

5. Verify that it is equal to cos(x) (find the difference and explain &)
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&i‘;esa Single Variable Function
d EX. 3: Compute dy = % (sin(x))

1. Initialize DACE to perform 20-th order computations in one variable

DA::init ( 20, 1 );
2. Initialize x as a DA number and compute sin(x)

DA x = DA (1) ;

DA y = sin(x); Note that the integral of sin(x) function

can be easly computed through the

d .
3. Compute dy = — (sin(x)) DACE (- v.integ (1))

DA dy = y.deriv(1l);
4. Print to screen
cout << "d[sin(x)]/dx" << endl << dy << endl;

cout << "cos (x)" << endl << cos(x) << endl;

5. Verify that it is equal to cos(x) (find the difference and explain &)
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g-esa Multivariate Function
0 EX. 4 Sombrero Function: z = sin(y/ (x2 + x2)) /{/ (x? + x2)

1. Initialize DACE to perform 10-th order computations in 2 variables

DA::init ( 10, 2 );

2. Initialize x as a two-dimensional vector of DA numbers (Taylor expansion
around the point (0,0))

AlgebraicVector<DA> x(2);
x[0] = DA(1);
x[1] = DA(2);

3. Evaluate sombrero function

DA z = somb(x);
cout << “Sombrero Function” << endl;
cout << z << endl;
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g-esa Multivariate Function
0 EX. 5 Sombrero Function: z = sin(y/ (x2 + x2)) /{/ (x? + x2)

1. Initialize DACE to perform 10-th order computations in 2 variables

DA::init ( 10, 2 );

2. Initialize x as a two-dimensional vector of DA numbers (Taylor expansion
around the point (2,3))
AlgebraicVector<DA> x(2) ;
x[0] = 2.0 + DA(1);
x[1] = 3.0 + DA(2);

3. Evaluate sombrero function

DA z = somb(x);
cout << “Sombrero Function” << endl;
cout << z << endl;
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g-esa Multivariate Function
] EX. 6: Gradient of sombrero function

1. Initialize DACE to perform 1-st order computations in 2 variables

DA::init( 1, 2 );

2. Compute the 1-st order Taylor expansion of the sombrero function around
the point (2,3) (See EX.5)

3. Compute the gradient sombrero function around the point (2,3)

AlgebraicVector<DA> grad z(2);
grad z = z.gradient();

4. Verify that the obtained result is equal to the aalytical solution, that is

dx _
cout << "Grad. of sombrero function" << endl; /ay"_4l1184886

cout << grad_z << endl; az/ay=—0.1777329
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g-esa Multivariate Function
o EX. 7: Gradient of sombrero function

1. Initialize DACE to perform 5-th order computations in 2 variables

DA::init( 5, 2 );

2. Compute the 5-th order Taylor expansion of the sombrero function around
the point (2,3) (See EX. 5)

3. Compute the gradient sombrero function around the point (2,3)

AlgebraicVector<DA> grad z(2);
grad z = z.gradient();

4. Verify that the obtained result is equal to the aalytical solution, that is

cout << "Grad. of sombrero function" << endl;
cout << grad z << endl;
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