

OPTICAL AND ELECTRONIC SOLUTIONS FOR TESTING AND FAILURE ANALYSIS

Comparison and Applications of Different Scanning Methods using an Industrial Laser System Dedicated to Single Event Effects Testing

Sébastien Jonathas, David Horain
PULSCAN

sebastien.jonathas@pulscan.com

Introduction

- Laser testing has become a common way to test IC for Single-Event Effects
- Main advantages:
 - In-lab tool
 - Ease of use
 - Spatial and temporal information about SEE sensitivity
 - No dose effect
 - Reduction of the parts selection and qualification total cost
- Even if laser testing is easy to use, especially thanks to industrial laser systems, many parameters have to be considered to optimize the efficiency of the test
- This presentation will focus on the different scanning methods used depending on the objective of the laser test campaign:
 - Events Screening
 - Events Counting
 - Events Mapping

Outline

- PULSCAN laser system: PULSYS-RAD
- Focus on specific scanning modes
- Examples of Applications
- Conclusions

The PULSYS-RAD System

PULSYS Main Frame

- Microscope
- Antivibration Table
- General Interlock
- Protective enclosure

PULSBOX Laser source(s)

- Laser source
- Energy control
- Trigger control
- Pulse monitoring

Control

- PULSWORKS Software
 - Laser control
 - Scanning control
 - Data acquisition and analysis
- Control Pad

Motivation

- Scanning a complete chip at high resolution is usually not recommended / possible
 - Complete scan is often not relevant
 - Symmetries, repetitions
 - Well known non-sensitive area (pad...)

=> Split the DUT area into Regions Of Interest (ROI) < 1mm²

- Scanning time is set by adjusting:
 - The laser pulse injection **frequency** mainly limited by:
 - The test loop period (monitoring, data acquisition, data transfer...)
 - The pulse to pulse accumulation of the generated charges
 - The scanning step (resolution)
- When preparing the design of experiment (DoE), a trade-off need to be found between:
 - Objective of the campaign
 - Time period of the test loop

Various scanning methods provide more options and flexibility when preparing the DoE

Device Under Test

- AMD Xilinx Zynq-7000 System-on-Chip (SoC) FPGA
- Technology process: planar bulk 28nm
- Flip-chip package
- Backside is mirror polished (to remove the engraved inscriptions)
- Substrate thickness : 656μm

Region of interest: On-chip Memory (OCM)

8990 μm **Programmable Logic blocks Processing** system

OCM: 256 KB

2 physical blocks, 4 logical Banks (64 KB each) named OCM0-1-2-3

Test set-up: laser facility

PULSYS-RAD STD in its Single Photon configuration

Wavelength: 1064nm

Pulse duration: 30ps

Repetition Rate: Single pulse to 1MHz

Energy range: pJ to nJ

Scanning resolution: 10nm

Test set-up: data acquisition

OCM self-test by DUT Arm core

Different kinds of scan modes

Standard scan

- Stop-and-go at each point of a regular 2D grid
- ⇒ Events Mapping
- ⇒ Events Screening
- Events Counting

Fast scan

- Move continuously along each line (no stop at each point)
- Laser pulses are automatically triggered at evenly spaced points
- ⇒ Events Screening
- Events Counting

Random scan

- Move along randomly generated segment
 - Fast area coverage
 - Various resolutions during the same scan
 - Non-deterministic succession of events triggering
- ⇒ Events Screening
- Events Counting

SEU Threshold Energy

- Using the Fast Scan mode (for screening or counting events only)
 - Scanning speed and resolution adjusted to have 1 laser pulse / 1ms / 0.2μm
 - Asynchronous test at lower frequency: test loop = 9ms
- Let's consider each half block separately (symmetry)

Scan	Fast
Fast axis	Х
Direction	Alternate
Step X	0,2μm
Step Y	10μm

Scanning time: 2min

(per half block and per energy)

Threshold energy measurement

Threshold energy: 380pJ

Fast and accurate solution to measure the SEU threshold energy of the OCM

Note:

- estimated equivalent LET
 - with infinite radius: 22.83 MeV.cm2/mg
 - by considering the spot size effect (0,2μm): 6.20 MeV.cm2/mg
- HI test results: < 7 MeV.cm2/mg

Z position

Scanned zone dimensions:

12 x 13 μm²

Z exploration: 14 μm

Scanning resolution:

1μm x 1μm x 1μm

Scanning time: 22min

Asynchronous test:

Laser injection period 75ms; test loop = 109ms

Scan	Standard
Fast axis	X
Direction	Alternate
Step X	1μm
Step Y	1μm
Step Z	1μm

For long scans, we will set the energy @1000pJ (more tolerant to focus variation)

Laser cross section

- Using the Random Scan mode
- Scanned zones dimensions:
 - Block 2: 810 x 167 μm²
- Scanning resolution:
 - Number of points per segment: 81
 - Number of segments: 22
- Scanning time: 3min per energy
- Asynchronous test:
 - Laser injection period 100ms; test loop = 60ms

Scan	Random
Fast axis	-
Direction	-
Step X	10
Step Y	7,8

Do not need a systematic scan

- Scanned zones dimensions:
 - 822 x 431 μm²
 - 799 x 438 μm²
- Scanning resolution: 1μm x 1μm
- Scanning time: 17h30min
- Asynchronous test:
 - Laser injection period 75ms; test loop = 109ms

Number of error

Full report

- Scanned zones dimensions:
 - 822 x 431 μm²
 - 799 x 438 μm²
- Scanning resolution: 1μm x 1μm
- Scanning time: 17h30min
- Asynchronous test:
 - Laser injection period 75ms; test loop = 109ms

Full report

- Scanned zones dimensions:
 - 822 x 431 μm²
 - 799 x 438 μm²
- Scanning resolution: 1μm x 1μm
- Scanning time: 17h30min
- Asynchronous test:
 - Laser injection period 75ms; test loop = 109ms

- Scanned zones dimensions:
 - 822 x 431 μm²
 - 799 x 438 μm²
- Scanning resolution: 1μm x 1μm
- Scanning time: 17h30min
- Asynchronous test:
 - Laser injection period 75ms; test loop = 109ms

- Scanned zones dimensions:
 - 822 x 431 μm²
 - 799 x 438 μm²
- Scanning resolution: 1μm x 1μm
- Scanning time: 17h30min
- Asynchronous test:
 - Laser injection period 75ms; test loop = 109ms

- Scanned zones dimensions:
 - 822 x 431 μm²
 - 799 x 438 μm²
- Scanning resolution: 1μm x 1μm
- Scanning time: 17h30min
- Asynchronous test:
 - Laser injection period 75ms; test loop = 109ms

Number of error

Standard scanning with high resolution @1nJ

- Scanned zones dimensions:
 - 4.9 x 39.5 μm²
- Scanning resolution: 0.1μm x 0.1μm
- Scanning time: 27min
- Asynchronous test:
 - Laser injection period 75ms; test loop = 109ms

Standard

Constant

0,1µm

0,1µm

Υ

Alternate direction vs Constant direction

Alternate direction slightly faster but introduces an artefact due to the mechanical hysteresis => Alternate direction more dedicated to large zones and Fast scan mode

Interest of the sub-spot size resolution

- Energy: 700pJ
- Scanned zone 2.4 x 2.1μm²

Scanning resolution below the spot size enables resolution of submicron structures

Multi-Zones / Multi-Energy / Multi-Z standard scanning

- Scanned zones dimensions:
 - 40 x 36 μm²
- Scanning resolution:
 - 0.5μm x 0.5μm
- Scanning time: 5h20min
- Asynchronous test:
 - Laser injection period 75ms; test loop = 109ms

Scan	Standard
Fast axis	Х
Direction	Alternate
Starting point	NW
Step X	0,5μm
Step Y	0,5μm
Step Z	1μm
Energy	1000pJ

Border of the matrix most sensitive

Conclusions

- Laser testing is not a replacement for particle beam testing, but a powerful complementary tool
- Complete scan of a large complex die is often not relevant or not possible
 - Recommendation to split the DUT area into Regions Of Interest (ROI)
- Then a trade-off need to be found between
 - Scanning area coverage
 - Scanning resolution
 - Scanning time
- Different scanning modes can be used to scan the ROI efficiently:
 - Fast scan provides fast results for events screening and events counting
 - Random scan can also be used for events screening and events counting in a nondeterministic sequence of pulse injection locations
 - **Standard scan** is suitable for accurate mapping of the SEE sensitive areas
 - Also suitable for events screening and events counting depending on the zone size and desired scanning resolution

Thank you

Need more information?

contact@pulscan.com