

BASICS AND DEFINITIONS FOR LASER TESTING OF SINGLE-EVENT EFFECTS

Vincent Pouget IES, CNRS, University of Montpellier

Content

- SEE reminders
- Principles of laser testing
- Experimental parameters
- Laser-ion correlation
- Summary

Single-Event Effects

 Effects induced by the interaction of a single particle with the materials of a device

Linear Energy Transfer (LET)

 The LET quantifies the transfer of energy from a particle to the target material

LET = Energy transfered per unit of length

- For the particles and energies of interest:
 - LET ≈ electronic stopping power
- For a given target material, LET is normalized with respect to the material density:

LET_{Si} expressed in MeV.cm².mg⁻¹

 In device physics, the interaction is modeled by the electronhole pair generation rate

$$G_{ion} \propto LET$$

Testing for Single-Event Effects

- Expose the device to a fluence Φ of particles (mono-species and mono-energetic beam in most cases)
- Count the number **N** of (non-destructive) events of interest
- Derive the event cross-section $\sigma = \frac{N}{\Phi}$

Can we measure this using a laser?

Principles of laser testing

- Using a focused beam of short laser pulses to generate electron-hole pairs in the semiconductor volume of a device
 - Short pulses to reproduce the transient nature of an ionizing radiation interaction
 - Focused beam to reproduce the local nature of the interaction
- Main advantages of laser testing
 - Spatial resolution of sensitive regions of a component
 - Convenient in-lab tool to reduce testing costs & constraints

- Requires optical access to the active semiconductor volume
- Calibration of laser pulse energy with respect to LET has uncertainties
- No ionization of the dielectric materials ⇒ no Total Ionizing Dose
 - Good for searching rare events
 - Laser testing not suitable if dielectric ionization may contribute to the SEE (SEGR in power devices, SEU in flash memory cells...)
- No atomic or nuclear interaction ⇒ no Displacement Damage

Focusing a Gaussian laser beam...

Optical intensity

$$I(r,z,t) = I_0 \frac{w_0^2}{w(z)^2} e^{-\frac{2r^2}{w(z)^2}} e^{-\frac{t^2}{\tau^2}}$$

with
$$w(z)=w_0\sqrt{1+\left(\frac{z}{z_0}\right)^2}$$

$$z_0=\frac{\pi w_0^2}{\lambda_0} \quad {\tiny \begin{array}{c} \textit{Confocal (Rayleigh)}\\\textit{parameter} \end{array}}$$

... into a Si Substrate

Vincent Pouget

Linear optical absorption in Si

Interband absorption (α_{IB})

Free carriers absorption (α_{FC})

Total absorption ($\alpha = \alpha_{IB} + \alpha_{FC}$)

- Phonon-assisted transition ⇒ dependence on T°
- Fermi's golden rule ⇒ transition rate locally proportional to optical intensity

Single-photon vs Two-photon absorption

Single-Photon Absorption (SPA) $\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\$

☐ Requires higher optical intensity⇒ Shorter pulse duration

Single-photon vs Two-photon absorption

Single-Photon Absorption (SPA)

Two-Photon Absorption (TPA)

Charge generation

$$G = \frac{\alpha_{IB}}{\hbar \omega} I$$

$$G = \frac{\beta}{2\hbar\omega}I^2$$

Radial profile

Vincent Pouget

Gaussian

Gaussian, $\sqrt{2}$ smaller at same λ

Longitudinal profile

Convergence + exponential attenuation

Complex, limited to focal region

Single-photon vs Two-photon absorption

Typical use cases of laser testing

Charge collection mapping & mechanisms analysis

- Technology characterization
- Dedicated test structures

Mapping sensitive areas for specific events

- Usually following an accelerator campaign
- ☐ Circuit response analysis, circuit or layout design corrections

Local threshold measurements

RHA

- Comparing different layouts, electrical designs or the effect of external parameter values
- Extracting the Safe Operating Area of power devices

Fault injection

- Complex test setup validation
- ☐ Firmware, software or system-level impact analysis or mitigation evaluation

Devices screening

- Reduce the number of candidate parts for a project, before an accelerator test campaign
- ☐ Is this COTS SEL-free?
- □ RHA with low test budget

Mature applications

Growing applications

Two practical approaches

Parameters: Wavelentgh (for Si devices)

Parameters: **Spot size**

- □ Should be as small as possible to get closer from an ion track
- Spot size always larger than an ion track; may lead to « spot size effects »
- Not limiting the achievable mapping resolution nor the dimensions of testable devices
- ☐ May drift over time in free-space optical setups: periodic monitoring required
- Beam spot size vs beam-waist:

$$d_{1/e^2} = 1.7 \ d_{FWHM} = 2w_0$$

Smallest possible beam-waist:

- □ SPA: charge track spot size = optical beam spot size
- \Box TPA: charge track spot size = optical beam spot size / $\sqrt{2}$

Example:

with a good optical setup:

$$M^2 = 1.2$$

$$NA = 0.7$$

 $\Rightarrow d_{1/e^2} \approx 1.16 \mu m \ @1064 nm$

Variations

Using larger spot sizes

"Local" irradiation for quicker screening [Chumakov, 2011]

Using specific beam structure

Bessel beam for longer TPA spot [Hales, 2020]

Parameters: **Pulse duration**

- Laser pulse duration must be short enough to reproduce the real dynamics of an SEE
 - Particle time-of-flight, e-h pairs generation and thermalization: ~1ps
 - Device response (charge collection, circuit feedback): from a few ps to ns
 - Laser pulse time-of-flight in Si (12fs/µm) is negligible
- ⇒Laser pulse duration should be shorter than the device electrical reaction time
 - Longer pulse durations may lead to:
 - Erroneous threshold measurements
 - Activation of different failure mechanisms

- Useful ranges
 - SPA
 - [1, 50] ps
 - TPA

Vincent Pouget

• [100, 500] fs

[Douin et al, IEEE TNS 2006]

Parameters: **Pulse Frequency**

- Pulse frequency (repetition rate) may be controlled directly within the laser source or by external modulators
- Using a high pulse frequency is tempting to rapidly increase the pulse fluence and reduce scanning time

BUT

Pulse period should be long enough to enable the device to return to a steady state (including charge transport + circuit effect + local temperature) between two consecutive pulses

- Max usable frequency depends on DUT technology, scanning motion speed...
 - Should be < 1kHZ in most cases

Parameters: Scan Resolution or Pulse Fluence

PARTICLE BROAD-BEAM TESTING

Particle fluence: $\Phi = \frac{n_{particles}}{S}$

LASER TESTING

dx, dy = scanning **resolution** (or steps)

Laser pulse fluence:
$$\Phi = \frac{n_{pulses}}{S} = \frac{1}{d_x d_y}$$

Resolution (dx=dy)	Fluence
1 μm	10 ⁸ cm ⁻²
3 μm	10 ⁷ cm ⁻²
10 μm	10 ⁶ cm ⁻²
31 μm	10 ⁵ cm ⁻²

The choice of the scanning steps should be done independently of any consideration on the laser spot size.

Parameters: Scan Resolution or Pulse Fluence

☐ For **mapping**:

- Define the required X and Y resolution
- Pulses usually delivered over a regular grid in synchronous mode (1 laser pulse & 1 DUT measurement per grid pixel)

$$\Phi = \frac{n_{pulses}}{S} = \frac{1}{d_x d_y}$$

☐ For **screening** or **counting** events:

- Define the required target fluence
- Pulses can be delivered at constant frequency f (asynchronous mode) while scanning
- ☐ f defined to stay in the impulse response regime and to prevent events pile-up according to the tester loop

$$\Phi = \frac{f \times \left(t_{scan} - t_{off}\right)}{S}$$
 Tester dead-time

Variations

Using specific scanning method

Spiral scanning motion [Chugg, 2011]

Fast scanning the beam using galvanometer-based mirrors [Cannon, 2017]

Parameters: Pulse Energy

- Main variable parameter during a laser test
 - Controls the amount of generated charge
 - Can be varied almost continuously and rapidly
 - In-line measurement required
- Useful range: from fJ to 10s of nJ depending on wavelength, DUT substrate...
 - Easily accessible equivalent LET range with SPA: 10⁻³ to 10³ MeV.mg⁻¹.cm²

Laser Mapping

Vincent Pouget

Laser Cross Section

At Cell level

Can we convert this into an LET scale?

Estimating the equivalent LET of a laser pulse

- Objectives
 - Given an LET, estimate the laser energy required to produce the same effect (with same cross-section)
 - Given a laser energy, estimate the ion LET that would produce the same effect (with same cross-section)
- Two complementary paths for equivalent LET estimation

Vincent Pouget

Equivalent LET calculation

Example

- Backside SPA testing through 400µm substrate
- Laser propagation and induced carriers density $N_{las}(\mathbf{r})$ calculated by numerical method

Define the volume of interest V

- With limited information on the technology, a rectangular parallelepiped (RPP), a cylinder, or an infinite slab (depth of 1µm, infinite radius) can be used
- Possible refinements with more information on the technology
 - Use a set of volumes with weights representing collection efficiency
 - Use a finite radius smaller than the spot size if the collection efficiency drops rapidly when moving away from the sensitive structure

•
$$LET_{las} = \frac{E_{pair}}{d_V} \iiint\limits_V N_{las}(\mathbf{r}) d\mathbf{r}$$

Equivalent LET calculation – Recent results

SEL in **16nm** FinFET

Using infinite radius works well (for SEL)

SEU in **7nm** FinFET

- Using infinite radius doesn't work (for SEU)
- Energy dependent correction introduced

26

CMOS Scaling

CMOS scales have changed, while laws of diffraction have not

A not so long time ago...

Now

- Laser-generated charge spread over multiple adjacent logic cells
 - Charge generated on the sides does not contribute to SEU in the target cell in the center of the beam
 - ⇒ We need to adjust the width of the volume used for equivalent LET calculation

Vincent Pouget

Laser spot in an SRAM array

Summary

- Laser testing for Single-Event Effects: a useful tool for in-lab testing and analysis of various SEE
- A complement to other techniques: heavy ion testing, modelling, focused X-rays...
- SPA and TPA: complementary techniques with a lot of background for Si technologies
- Commonly used today for SEE mechanisms analysis and RHBD
- Growing interest for RHA of COTS
- Laser-ion equivalence:
 - Some fundamental differences to be kept in mind
 - Equivalent LET estimation is possible, with some margins
- Guidelines for SEE laser testing available

