SPENVIS is among several tools and services that will continue to be important components of the tools available to the space environment and effects community. The current state of these tools will be discussed along with planned future work to enable their continued use within future agency and industry activities.
At geostationary orbit periods of elevated high energy electron flux can cause satellite charging leading to disruptions to satellite services and in exceptional cases satellite loss. Here we examine the time history of the electron flux at geostationary orbit using data from the GOES satellite. We consider the peak flux and 24 hour fluence and examine periods where satellites may be a...
Electric propulsion technology now enables satellite operators to achieve geostationary orbit without the use of chemical propellant via so-called electric orbit raising. This enables lower cost access to space by reducing wet mass, but necessitates a longer raising period, during which satellites pass through the hazardous radiation environment of the Van Allen belts.
Increased radiation...
In the frame of its Space Situational Awareness (SSA) programme, the European Space Agency (ESA) is establishing a Space Weather (SWE) Service Network. This network is organised in five Expert Service Centres (Solar Weather, Heliospheric Weather, Space Radiation, Ionospheric Weather, Geomagnetic Conditions) with online products and tools and is supported by the SSA Space Weather Coordination...
OMERE and FASTRAD© are being developed and distributed by TRAD for more than 15 years now. OMERE is a freeware that allows to define the radiation environment for a space mission, from particle fluxes to dose-depth curve (TID, TNID) and SEE rates. Concerning the Earth’s radiation belts, several engineering models are available, including the AE9/AP9 models. FASTRAD© is a 3D CAD tool for the...