10–12 Apr 2017
Europe/London timezone

Applications of MRED for Predicting Single Event Effects

Speaker

Dr Robert Reed (ISDE/Vanderbilt University)

Description

MRED (Monte Carlo Radiative Energy Deposition) is Vanderbilt University’s Geant4 application for simulating radiation events in semiconductors. Geant4 is comprised of the best available computational physics models for the transport of radiation through matter. Geant4 is a library of c++ routines for describing radiation interaction with matter assembled by a large and diverse international collaboration. MRED includes a model developed by researchers at Vanderbilt University for screened Coulomb scattering of ions (currently available in the latest Geant4 release), tetrahedral geometric objects, a cross section biasing and track weighting technique for variance reduction, and a number of additional features relevant to semiconductor device applications. The Geant4 libraries contain alternative models for many physical processes, which differ in levels of detail and accuracy. Generally, MRED is structured so that all physics relevant for radiation effects applications are available and selectable at run time. The underlying physical mechanisms for Single Event Effect (SEE) response are: 1) ionizing radiation-induced energy deposition within the device, 2) initial electron-hole pair generation 3) the transport of the charge carriers through the semiconductor device and 4) the response of the device and circuit to the electron-hole pair distribution and subsequent transport. Each of these occur on a different time scale and they are often assumed to be sequential, i.e., energy deposition determines the initial electron-hole pair generation, which in-turn impacts device and circuit response. We will provide a review of MRED applications that address issues as they relate to the mechanisms listed above.

Primary author

Dr Robert Reed (ISDE/Vanderbilt University)

Co-author

Dr Robert Weller (ISDE/Vanderbilt University)

Presentation materials