Risk assessment of uncontrolled debris re-entering the atmosphere depends on various parameters among which drag and heat rates play a major role. However, those parameters cannot be computed with high fidelity methods such as CFD (Computational Fluid Dynamics) within a reasonable time frame for a full earth re-entry. Thus, correlations are usually used in spacecraft demise codes that use the...
Risk assessment of uncontrolled debris re-entering the atmosphere depends on various parameters among which drag and heat rates play a major role. However, those parameters cannot be computed with high fidelity methods such as CFD (Computational Fluid Dynamics) within a reasonable time frame for a full earth re-entry. Thus, correlations are usually used in spacecraft demise codes that use the...
Simulating destructive re-entry is a demanding task that requires the modelling of non-equilibrium and high-temperature aerothermodynamics, structural and flight dynamics in presence of interacting shock waves, structural deformation, fragmentation and intense heat and mass transfer mechanisms. Three categories of methods can be identified to model re-entry: object-oriented,...
The present study aims at proposing a methodology for coupling the non-equilibrium modelling solver(NEMO) of open source CFD software SU2 Multiphysics with the open source ablation solver Porous material Analysis Toolbox(PATO). SU2-NEMO solves Navier Stokes equations with thermochemical non-equilibrium effects by using finite volume method. Surface heat flux and pressure distribution of...
During atmospheric entry, capsules and space debris are exposed to a flow environment with complex fluid thermochemistry and gas-surface interactions (GSI) that may lead to mass loss and shape change. A promising approach for the numerical simulation of such challenging flows is the use of immersed boundary (IB) and adaptive mesh refinement (AMR) techniques, which offer reliable and efficient...
The present work aims at improving the numerical prediction of graphite material degradation during an entire reentry phase. For this purpose, 2D axisymmetric simulations are carried out on the nosetip of the IRV-2 vehicle, which is a well-referred test case that employed a thermal protection system composed of non-charring carbon. The coupled fluid / thermal approach adopted for such...
During an atmospheric re-entry, a vehicle crosses at very high speeds the distinct atmospheric layers characterised by large density variations. The vehicle thus experiences several flow regimes, ranging from free molecular, rarefied (transition, slip) and continuous regimes. These regimes are commonly characterised by a Knudsen number (Kn) range [Kn is defined as the ratio of the mean free...