The laser method for Single-Event Effects testing is based on the photoelectric interaction of a short and focused laser pulse with the semiconductor material of a device to mimic the transient and localized track of electron-hole pairs that is produced by primary or secondary ionizing particles from radiation environments. We will briefly introduce the fundamentals of the laser testing...
We present Single Event Effect (SEE) testing method and results in a complex System-on-Chip (SoC) fabricated with a 16nm FinFET technology using backside Single Photon Absorption (SPA) laser testing, including Single Event Latchup (SEL), Single Event Transient (SET) and Single Event Upset (SEU) results.
We present our single-event effects (SEE) laser testing method and results on a commercial programmable 7nm FinFET System-on-Chip (SoC) obtained using backside single-photon absorption (SPA).
With their high breakdown voltage and ability to withstand high temperatures, wide bandgap-based devices are ideally suited for high-power and high-frequency applications in satellite communications, RADAR, and defense power switching. However, these devices, based on wide bandgap (WBG) semiconductor materials, are known to be prone to single-event effects (SEE). The susceptibility to single...
Lasers are employed not only for reliability purposes but also for fault injection attacks in order to assess the security of electronic components.
Nowadays, laser fault injection attacks represent a significant threat to the security of embedded devices.
Numerous state-of-the-art studies, mainly based on Single Event Effects, have investigated the use of lasers to inject faults into an...
The use of pulsed laser for pre-screening COTS parts to SEEs, and more specifically to Single Event Latchup, is beneficial because of the reduced cost and greater availability this method provides, as compared to heavy ions. At TRAD, pulsed Laser is mainly used for this purpose: evaluating part sensitivities to SEEs, prior to heavy ion testing, in order to reject the most sensitive ones, thus...
In the field of single-event effects (SEE) testing, laser testing [1] is commonly used for different purposes. The most well-known application is probably the accurate mapping of SEE sensitive areas in a device, especially in the context of radiation-hardening of an integrated circuit (IC) design. Another application consists in screening different components against critical events like...
After the invention of the laser in 1960, it wasn’t long until its potential use to emulate transient radiation-induced effects was recognized. Following the first experimental demonstration of this capability in 1965, a series of studies that aimed to replicate various single-event effects (SEEs) were published in quick succession. However, it wasn’t until 1987 when the first attempt to...
Surrogate testing approaches that can predict heavy-ion single-event effect (SEE) responses in a device-under-test (DUT) could prove invaluable in easing pressure on oversubscribed heavy-ion facilities. However, predictive testing faces many challenges for successful implementation. The most significant of these challenges is generating a carrier distribution capable of reproducing the desired...
As part of the commissioning activity for the new SEREEL2 pulsed laser single-event effects test system being created at Radtest Ltd’s Harwell site, tests have been carried out on two types of component to compare heavy ion test data with the results of laser testing. These results are being used for a comparison exercise to demonstrate the applicability of laser testing for the assessment of...
We present pulsed-laser SEE tests on commercial SRAMs
sensitive to SEL and SEU, comparing results to heavy ion data.