Over the past three years, the ESA TEC laboratory has been equipped with a SEE laser facility. During this period, we conducted a variety of tests and assessments on EEE components to evaluate their SEE sensitivity and identify design vulnerabilities. Additionally, we developed several tools to enhance data acquisition and analysis. In this presentation, we will showcase the results of...
We present Single Event Effect (SEE) testing method and results in a complex System-on-Chip (SoC) fabricated with a 16nm FinFET technology using backside Single Photon Absorption (SPA) laser testing, including Single Event Latchup (SEL), Single Event Transient (SET) and Single Event Upset (SEU) results.
We present our single-event effects (SEE) laser testing method and results on a commercial programmable 7nm FinFET System-on-Chip (SoC) obtained using backside single-photon absorption (SPA).
With their high breakdown voltage and ability to withstand high temperatures, wide bandgap-based devices are ideally suited for high-power and high-frequency applications in satellite communications, RADAR, and defense power switching. However, these devices, based on wide bandgap (WBG) semiconductor materials, are known to be prone to single-event effects (SEE). The susceptibility to single...
Lasers are employed not only for reliability purposes but also for fault injection attacks in order to assess the security of electronic components.
Nowadays, laser fault injection attacks represent a significant threat to the security of embedded devices.
Numerous state-of-the-art studies, mainly based on Single Event Effects, have investigated the use of lasers to inject faults into an...