ESA is dedicated to being a leading role model in space sustainability, extending its commitment from Earth to Earth's orbit and beyond. The Agenda 2025 delineates clear objectives to enhance ESA projects’ sustainable development benefits while simultaneously minimising its environmental footprint. The ESA Green Agenda is the action plan supporting key initiatives to achieve these objectives...
In the course of implementation of the Green Deal, the EU’s regulatory framework expanded significantly. RoHS Directive, REACH and CLP regulations are undergoing revision processes, addressing Chemical Strategy for Sustainability, while new initiatives such as Sustainable Product Initiative (SPI) and relevant delegated acts addressing European Circular Economy Plan are piling up.
The scope...
Two LCA studies were conducted in parallel on two Copernicus missions with the aim of quantitatively assessing the recurrent environmental impacts of the CRISTAL and LSTM satellites, which has as Lead System Integrator (LSI) Airbus DS.
The functional unit (FU) of this study is the “The definition, manufacturing, integration, qualification, testing and preparation for launch of the Satellite...
In the space industry, performing a comprehensive Life Cycle Assessment (LCA) as early as possible during Projects’ evolution is nowadays crucial for minimizing environmental impact and to define Ecodesign strategies. However, obtaining the necessary input data for the Life Cycle Inventory (LCI) can be challenging due to delays or lack of feedback from the supply chain and subcontractors. This...
An iterative Life Cycle Assessment has been performed in the frame of the Earth Observation mission CO2M with the aim of evaluating the environmental impact contributions of its Space Segment elements within the various mission phases, from B2 to E1. VITO and OHB teamed to provide a first iteration in 2022 (end of phase B2); now, with the project at the end of its phase C, a more consistent...
The European Space Agency's (ESA) experience with Life Cycle Assessment (LCA) in ESA projects has revealed environmental hotspots of space missions by phases of the lifecycle and for specific engineering processes such as manufacturing, office work, system and equipment testing, etc.
As LCA becomes a standard requirement for ESA missions, the expertise and data acquired enable the elaboration...
The development of the use of OTT (over-the-top) video services is illustrated by the exploitation of an impressive figure of 70% of the internet backbone bandwidth. Although there is room for eco-friendly improvement, as often users are provided with a unicast mode, a challenge remains on how to avoid congestion on distribution networks, thus requiring anticipating new investments and...
A LCA study was conducted with the aim of quantitatively assessing the recurrent environmental impacts of the Galileo Second Generation Satellites, in particular the batch 1 of this mission, which has as Lead System Integrator (LSI) Airbus DS.
The functional unit (FU) of this study is the “The definition, manufacturing, integration, qualification, testing and preparation for launch of the...
Space has captivated the human imagination for decades, fostering an environment of innovation and technological advancement. The exploration of these new space worlds has historically been done in an exclusive and often confrontational manner. Founded in 2021, it is the mission of The Exploration Company (TEC) to enable everyone to participate peacefully in the building of our human future....
MaiaSpace is a European space tech company designing, manufacturing and operating more sustainable space transportation solutions. Its ambition is to have the lowest environmental impact of the industry on the Earth and space, while being competitive. To achieve this, MaiaSpace has been evaluating the environmental impacts of its launch service through a Life Cycle Assessment (LCA) model since...
The Assessment and Comparison Tool (ACT) combines simplified Life Cycle Assessment with space-specific technical information to compute the environmental impacts of (future) space systems.
The tool is in its second development phase (project REACT). Originally developed to compute rapid prospective LCAs of launch vehicles, ACT’s new objectives cover the wider scope of space transportation...
Product design decisions significantly influence the environmental performance of a product from "Cradle to Grave". However, during this critical phase, designers often face a lack of environmental data and context, coupled with long feedback loops regarding the design’s impact. Addressing these challenges offers substantial potential for reducing environmental impact.
Integrating a Life...
The calculation of emissions from rockets requires a determination of time, location and the occurring species and their quantities. The University of Stuttgart is developing a tool to predict these for the launch and re-entry of rockets. The presentation will introduce the tool, which calculates the emissions of common propellants (LOX/LH2, LOX/CH4, LOX/RP-1, UDMH/NTO, Solid, Hybrid) for the...
ESA LCA DB
ESA LCA Database evolution
Abstract
This presentation relates to the activities of the ESA LCA Database project as part of ESA Clean Space Initiative. The main purpose of the project is to build, consolidate and maintain a fully operational and up-to-date environmental LCA database and provide support services to the ESA LCA Database end-users. The presentation will focus...
ESA has been pioneering the application of LCA to evaluate environmental impacts of space projects. The space sector is a unique domain, for which the application of LCA requires the development of dedicated databases and methodological rules. ESA published in 2016, for the first time ever, a Space Systems Life Cycle Assessment Guidelines, being a setting up stone in the progress of LCA for...
Data Quality Rating (DQR) allows to assess the level of credibility of the Life Cycle Assessment (LCA) performed. Furthermore, it allows to identify gaps, drive subsequent data collection and enables fair comparison of systems. This makes DQR calculation one of the most important parameters to be assessed when analyzing the environmental performance of systems and of the underlying data. This...
As set up in Agenda 2025, ESA strives for being the role model for a modern global space agency fully committed to improve the sustainability and social responsibility of space activities by 2030. The ESA Green Agenda contains actions in five different areas that will lead to a more sustainable Agency, notably:
- Area 1: Develop and implement a sustainability strategy for ESA space...
In the past decade, the booming of new space economy led to the urgent need for Europe to increase the competitiveness and resilience of the European space transportation services on the worldwide market. In this context, ESA has initiated the elaboration of a technical vision for the future of space transportation in Europe: Vision 2030+. Climate change is one of the most pressing issue...
The German Aerospace Center (DLR) has launched the S3D initiative, aimed at advancing the assessment and enhancement of sustainability in space activities. While recent years have seen growing attention to the environmental impacts of spacecraft and launch vehicles, S3D seeks to broaden this focus by integrating economic and social dimensions, transitioning from traditional Life Cycle...
Workshops on the life cycle analysis of space transportation systems have been held at the University of Stuttgart over the past three years. The workshops offered experts from science, industry and agencies the opportunity to exchange ideas, identify knowledge gaps and develop possible courses of action. The presentation is intended to summarize the results of the workshop and make them...
Background: Post-mission disposal is the final phase in the Life Cycle Assessment (LCA) of a spacecraft and is the yardstick used to evaluate the environmental impacts of disposal options on human health and the environment.
To date, the leading negative environmental impact identified (in the re-entry phase) is danger to human populations from surviving debris reaching the Earth’s surface....
As space activities expand, it becomes increasingly important to assess and mitigate its environmental impact. This study focuses on the environmental impact of in-space propulsion systems, specifically examining the ground-phase life cycle from propellant production to integration into the launcher (cradle-to-gate). Four liquid bipropellant systems representing current trends and future...
The production of propellant is a major contributor to the carbon footprint of a space launch, while recent research indicates the environmental impact of fuel combustion during launches could be more significant than previously thought. Fossil-fuel-free propellants are emerging as promising alternatives with potentially lower environmental impact and cost, including green-hydrogen, which...
Addressing Digital Pollution: Strategic Sustainability in the Modern Space Economy
In today's interconnected digital landscape, our constant engagement with the digital sphere has led to a surge in digital pollution. As consumers increasingly grasp the environmental implications of their digital activities, a new awareness is emerging. The burgeoning space economy, evolving towards a...