Speaker
Description
MiniPINS is an ESA funded study led by the Finnish Meteorological Institute to develop and prototype miniaturised surface sensor packages and their delivery systems for Mars (MINS) and the Moon (LINS). The study aims at miniaturizing the scientific sensors and subsystems, as well as identifying and utilizing commonalities of the packages, allowing to optimise the design, cut costs and reduce the development time. The study covers mission development phases 0 - B1, and has delivered its results in the Final presentation at ESTEC in October 2022. This presentation concentrates on MINS (Mars In-situ Sensors) surface sensor package and its delivery system.
MINS is a penetrator with approximately 25 kg mass, piggy-backed by another Mars mission spacecraft to Mars and deployed either from the approach orbit or Mars orbit. In MiniPINS mission, 4 penetrators are planned to be released to different landing sites on Mars. The design of MINS has significant heritage from FMI’s MetNet mission design [1], with some changes introduced after recent modelling efforts. In the Martian atmosphere the penetrators perform autonomous aerodynamic braking with inflatable braking units (IBUs) until they reach the target velocity of 60-80 m/s for entering the Martian surface. The penetration depth target is up to 0.5 m, depending on the hardness of the soil. The geometry of MINS penetrator includes a thin section to improve penetrability to the soil, a medium section with 150 mm diameter to accommodate a 2U CubeSat structure inside, and a top section with a wider diameter to stop the penetration and avoid the top part to be buried inside the soil. The deployable boom is accommodated in the top section along with the surface sensors.
MINS penetrator carries sensors to perform an ambitious science program to study the Martian atmosphere, seismology, and soil chemistry. Scientific measurements will be performed above, at and below the Martian surface. MINS nominal mission is designed to last for 1 Martian year (2 Earth years) with another Martian year as an option. The small size of MINS makes it a good candidate for forming a large observation network on Mars. Power production of the nominal MINS design is based on solar panels, which restricts the possible landing sites below +/-40 degree latitudes, but for polar missions the design could be altered to utilise also an RHU, which would provide enough thermal energy for MINS to survive and operate also during the Martian winter.
[1] Harri et al. (2017), The MetNet vehicle: a lander to deploy environmental stations for local and global investigations on Mars, Geosci. Instrum. Method. Data Syst., 6, 103-124