25–27 Feb 2019
European Space Research and Technology Centre (ESTEC)
Europe/Amsterdam timezone

OBC-SA On-Orbit Processing of Reflected GNSS Signals for Maritime Target Detection

27 Feb 2019, 15:20
20m
Erasmus (European Space Research and Technology Centre (ESTEC))

Erasmus

European Space Research and Technology Centre (ESTEC)

ESTEC (European Space Research & Technology Centre) Keplerlaan 1 2201 AZ Noordwijk The Netherlands Tel: +31 (0)71 565 6565
Oral presentation On-Board Processing Algorithms On-Board Processing Algorithms

Speaker

Achim Helm (Airbus Defence and Space)

Description

Local and short-term extreme weather conditions endanger seamless maritime logistics and quasi-autonomous operation in today’s global and cross-linked economy. Not only, there is more likelihood of accidents and associated environmental damage. Shipping traffic is also increasingly the target of piracy, organized crime and terrorism. Moreover, illegal maritime activities such as illegal fishing, drug trafficking, weapon movement / proliferation and illegal immigration are constantly on the rise. Hence, there is an increasing demand of maritime security to be provided in a complex political environment which requires cost-efficient persistent maritime monitoring services to improve continuity of situation awareness picture of sea conditions and maritime target activities.

Most of today's maritime monitoring systems rely on satellites with either active radar or weather-depending optical payloads. This paper describes how the globally existing GNSS signals can be used in a persistent and cost-efficient way to improve continuity of situation awareness picture of sea conditions and maritime target activities by covered passive sensing and utilizing available weather-independent direct and ground reflected GNSS signals. The target detection is established by monitoring the targets footprint short-term time evolution in the local disturbed sea surface pattern which is captured by the reflected GNSS signal. Using satellite-to-satellite-to-ground low-volume communication for payload operation and telemetry allows for providing the in-orbit derived user products, e.g., maritime target detection and maritime surface awareness maps with low product latency to the user.

Then, this paper describes the implementation of such concept through innovative modular payload data processing equipment derived from the OBC-SA DLR studies. This computer concept allows for operating in-orbit different software app(lication)s depending on mission objectives. The OBC-SA modular architecture is based on CompactPCI Serial Space standard, providing open specifications for modular computing for space applications, based on many years heritage in the industrial automation domain. The CompactPCI Serial Space standard has been developed for extending the commercial standard with elements required in space applications to ensure high reliability and availability in extreme environments, but preserving a high performance and versatile architecture in a simple and cost-effective framework. This modular concept allows for reuse of available hardware and software elements, e.g., from other projects, to reduce cost and time for development and test. The concept is scalable with respect to, e.g., mass memory capacity and computing performance.

Applied to the use-case for processing in-orbit reflected GNSS signals for maritime target detection, high energy-efficient performance is mandatory for the payload needs to process in-orbit the direct and reflected GNSS RF L-band signals in the digital domain. Therefore, the proposed payload equipment relies heavily on commercial-of-the-shelf state-of-the art processing elements which provide a very high performance/power consumption ratio. 20 GFLOPS average processing power is required to process a 1minute raw GNSS signal stream, perform target detection and generate the user product within less than 5 minutes. This processing power cannot be provided with today's available space-qualified processors like LEON4 family. The 8 core P8040 from NXP is selected as a promising candidate, providing 12 GFLOPS average processing power. The benefit of the modular approach is that if more processing power is needed, the board can be simply exchanged by a more powerful one – keeping all other modules (including the software).

Paper submission Yes

Primary author

Achim Helm (Airbus Defence and Space)

Co-authors

Juan José Blasco Burguillos (Airbus Defence and Space) Hans-Juergen Herpel (Airbus Defence and Space)

Presentation materials