Conveners
Thermal Control
- Romain PEYROU-LAUGA (ESA)
Thermal Control
- Gunnar Sieber (European Space Agency)
A space 40 K Reverse Turbo-Brayton (RTB) cooler is currently under development in Europe to enable a variety of cooling needs, including vibration-free cooling of sensitive detectors and improvement of low-temperature cryochains. The performance of an RTB cooler relies on the effective heat exchange in its recuperator. In this context, a novel high-effectiveness mesh-based recuperator concept...
Electrically heated temperature control is a widely used concept in spacecraft thermal control. Currently this technology has two main limitations: the use of many cables when using a large number of heaters, and limitations when reconfiguring the temperature setpoints in-flight. The “Smart Heaters” is an autonomous and self-standing electronic control system that can overcomes the limitations...
The X-IFU instrument, for mission ATHENA, use TES (Transition Edge Sensor) sensors in its focal plane, which require temperatures of tens of milli-Kelvin in operation. Therefore, the focal plane needs an extremely efficient thermal isolation. The complete detector assembly (focal plane, cold electronic, and the close refrigerators for the thermal conditioning in the assembly),
perform such...
Due to increasing payload electronics power consumption, today's spacecrafts often require generally larger payload radiators as the spacecraft body can provide. The use of deployable radiators seems to be the next logical step to achieve the required enlargement of the radiative area. Large deployable radiators based on two-phase heat transportation systems are today available, but these...
Within the ESA’s Science Program related to the Athena (Advanced Telescope for High Energy Astrophysics) mission the possibility of applying graphene-based thermal straps for cooling the scientific instrumentation on board the satellite, specifically the Wide Field Imager (WFI), was investigated. Graphene-based thermal straps could potentially replace the current baseline design relying on...
The Airbus Defence and Space Eurostar NEO development program has qualified a new system to cover OSR in order to limit the thermal rejection into space dissipated inside the spacecraft. During critical phase of the satellite lifetime as the Electrical Orbit Raising (EOR) phases or chemical transfer, an important part of the available electrical power is used to heat up the payload units to...
We present an analysis of the cost savings and performance benefits delivered by Carbice® Space Pad, a carbon-nanotube-based thermal gasket, for spacecraft builds. We show a 62% net savings in the Integration Assembly & Test (IA&T) and Thermal cost in a typical satellite build, supported by an independent analysis performed by a large space prime. IA&T cost and schedule reductions are measured...
The relatively high power density of CubeSats results in large amounts of heat generated that needs to be dissipated to prevent overheating of a satellite’s components. At present, passive thermal control means are used to resolve CubeSats thermal issues, however, as these satellites evolve, advanced active Thermal Control Systems (TCS) will be required. Especially the novel CubeSat propulsion...