18–20 Oct 2022
ESA/ESTEC
Europe/Amsterdam timezone

Methodology for electrical harness thermal modelling in a global system thermal analysis

19 Oct 2022, 14:00
30m
Newton

Newton

thermal analysis and software tools Thermal Analysis

Speaker

Maxime ANDRE

Description

For miniaturized thermal systems or thermal systems with limited energy, the harnesses heat leaks can be the major concern both for flight or test harnesses. In this frame, and based on test results, a methodology has been identified to adopt an appropriated reduced thermal modelling of the harness taking into account both conductive and radiative heat transfers. The actual aim is to provide to thermal engineers the keys to simulate accurately and easily the harnesses heat leaks of miniaturized thermal systems in a global system thermal model without consume a large amount of nodes (where a detailed thermal modelling of all harnesses is impossible).
This reduction is based on radiative and conductive thermal properties of the harness, the routing and the thermal radiative environment. First, a theoretical approach will be confronted to test results already presented in ESTEW 2021 in the paper "characterization test of thermal harnesses". Secondly, a complementary new test will be presented in order to provide other harness heat leak thermal behavior knowledge especially on the routing. This work is a partnership between CNES and EPSILON performed in the frame of the MMX Rover CNES/DLR project.

Primary author

Presentation materials