28–29 Nov 2023
European Space Research and Technology Centre (ESTEC)
Europe/Amsterdam timezone

Star Dundee Contribution

28 Nov 2023, 16:00
30m
European Space Research and Technology Centre (ESTEC)

European Space Research and Technology Centre (ESTEC)

Keplerlaan 1 2201AZ Noordwijk ZH The Netherlands

Speaker

Marti Farras Casas (STAR-Dundee)

Description

SpaceFibre (ECSS-E-ST-50-11C) is an evolution of SpaceWire, being backwards compatible with SpaceWire at the packet level. SpaceFibre is a very high-performance, high-reliability and high-availability network technology specifically designed to meet the needs of modern space applications where very high throughput is required. It provides point-to-point and networked interconnections at Gigabit rates— more than 6.25 Gbit/s per lane for current FPGAs, with multi-lane allowing to reach up to 16 times the speed of a single lane —with Quality of Service (QoS) and Fault Detection, Isolation and Recovery (FDIR). SpaceFibre NORBY and OPS-SAT technology demonstrators have already flown SpaceFibre, with more missions in both Europe and the USA currently designing or planning to use SpaceFibre.

STAR-Dundee has developed a complete family of SpaceWire and SpaceFibre IP cores fully compliant with these ECSS standards.

A new generation of radiation-tolerant FPGAs is emerging to cope with the ever-growing processing power required by newer missions, the BRAVE FPGAs family is a good example of this new generation of FPGAs. SpaceFibre operation requires serial transceivers, which are already inbuilt in modern FPGAs. The SpaceFibre IPs have been adapted to take advantage of the specific transceivers and memory blocks offered by these new FPGAs.

In this work we present the effort done to ensure that STAR-Dundee SpaceFibre IP cores work on the BRAVE FPGAs including simulation results from the verification with simulation models of the transceivers, post-synthesis resource utilisation and simulation of SpaceFibre IP and hardware tests done in the process.

Presentation materials

There are no materials yet.