Speaker
Description
In the space environment, semiconductors can be exposed to various radiation sources depending on mission conditions. Depending on the type, energy, and speed of radiation, different damage mechanisms occur. These can be broadly categorized into Total Ionizing Dose (TID) effects due to radiation accumulation and Single Event Effects (SEE) caused by the penetration of radiation particles. We conducted modeling and simulation of the damage caused by TID effects and SEE on (Complementary Metal Oxide Semiconductor) CMOS, which are critical components of electronic systems.
Using semiconductor characteristic simulation tools commonly employed in the electronics field, we performed simulations that combined radiation-induced internal property changes and physical analysis resulting from ion tracking.
In this study, we utilized this Modeling and Simulation (M&S) technology to derive semiconductor processes and transistor layout structures that are radiation-resistant. We validated their properties through chip fabrication. The results of this study can serve as a means for assessing the reliability of semiconductors for radiation environments in the future and will make a significant contribution to enhancing the radiation tolerance of electronic systems.