Speaker
Description
Nowadays two tendencies makes that the number of in orbit objects are increasing exponentially. The launch of smallsats constellations, and the fact that the old satellites remains in orbit which also increase the risk to generate colliding debris. Considering these trends, the aim of the CRUSSADER (Capture system for servicing and debris removal) project is to develop a gripping system up to TRL6 with its associated GSE and control algorithm able to perform the capture of medium to large size spacecraft equipped with a common standardised interface. The final objective is to deorbit them to radically reduce the risk of collision and free up orbits for the placement of new satellites.
Based on previous design studied in the frame of ESA project (RETURN, PRINCE and MICE), the gripping system concept is composed of a clamp system and a robotic hexapod. The anchoring point on the targeted satellite is standardised interface defined during the projects PRINCE (Passive Mechanical and Rendezvous Interface for Capture After End-of-life) and its continuity MICE (Mechanical Interface for Capture at End-of-life). Both common standardised interface and gripping system are fixed at the centre of the LAR of respectively the spacecraft and the servicer module which are used as hard docking during launch and end of capture phase as defined in RETURN concept of mission.
The main challenges are the development of the interface fine sensing system, the design of the End-Effector to be able to support the high loads induced during the hard capture especially during the deceleration phase and the design of the hexapod to allow the highest possible range in terms of translation and rotation.