Speaker
Description
Space Sustainability has become an important topic over the last two decades fueled by the debris issue and an increasing number of space infrastructure elements. Besides servicing and debris removal partly sharing technologies, new system solutions are proposed to broaden the scope of space mission, to improve their economics and to make space sustainable in the long-term, also regarding technology, systems, missions, operations and business alike.
The upswing of innovative and commercial NewSpace ventures and general space industry trends suggest a move toward higher lot sizes of systems, subsystems and components, thus, series production. At large, these developments and concepts will benefit from cooperative design and plug-and-play (PnP) principles, which in turn are centered around standardized interfaces per se – as well as modularity as enabling system philosophy. With On-Orbit Assembly (OOA), On-Orbit Servicing (OOS) including refurbishing and re-fueling, On-Orbit Manufacturing (OOM), Active Debris Removal (ADR) and In-Space Recycling (ISR) or other supporting services. Space missions and business span over manifold themes beyond Earth orbits and across the solar system, involving robotics, habitats, manufacturing, resource exploitation and more. Large space structures, logistics and warehousing will become common space infrastructure elements.
In this context especially modular concepts and standardization of space infrastructure elements have been investigated for decades and are now gradually becoming a reality as the CubeSat revolution has shown in a first step. Standard interfaces are considered instrumental enablers for new dimensions of flexibility and entirely new space systems, operations and business. New standards are intended to provide the foundation for a new commercial repertoire of robust space-based capabilities and a future in-space economy. Besides Safety, cost and flexibility will become key to allow for adjustments and repurposing, staged approaches, etc. and economy of scale effects as routine operations suggest. And, NewSpace will drive this with new space approaches.
This paper elaborates on the iSSI® Modular Coupling Kit by iBOSS, yet the most advanced and mature multi-functional and multi-purpose potential future space system interface standard. Core is the patented iSSI® (intelligent Space System Interface), the fastest (coupling), the most compact (dimensions) and the lightest (mass) solution of its kind with an industry series-manufacturing process solution to date. The iSSI® technology, its specialties and specs will be presented, followed by selected applications and use cases and associated benefits. Finally, enhancing capabilities and effects regarding flexibility, design, architecture and operations will be sketched in the context of OMAR (On-Orbit Manufacturing, Assembly and Recycling).
The authors and partners involved have longstanding experiences, background and visibility in the global commercial space arena with involvement in multiple innovative new business endeavors comprising dedicated expertise in space commercialization and innovation, new business creation and finance, international partnerships, commercial prototyping and series manufacturing.