10–12 Oct 2023
ESA/ESTEC
Europe/Amsterdam timezone

Trade Off EcosimPro/LMS Amesim for MPL modeling and its co-Simulation with e-Therm

12 Oct 2023, 09:00
30m
Newton

Newton

thermal analysis and software tools Thermal Analysis

Speaker

François BRUNETTI (Dorea)

Description

EcosimPro is a versatile mathematical tool that excels in modeling and simulating both continuous and discrete systems, making it particularly adept at non-causal simulation. It is capable of effectively handling Differential-Algebraic Equations (DAE) and Discrete Events, offering applicability across various problem domains. Originally funded by the European Space Agency (ESA) to simulate Environmental Control and Life Support Systems for manned spacecraft like Hermes and Columbus, EcosimPro is now developed and distributed by Empresarios Agrupados A.I.E. Its utility extends beyond the aerospace sector, finding applications in fields such as fluids, chemical processes, control systems, electrical engineering, and propulsion.
Thales Alenia Space (TAS) has developed a Two-phase Mechanically Pumped Loop (2Φ-MPL) for transferring heat from high throughput telecommunication payloads to external rejection radiators. The first deployment of the 2Φ-MPL took place on the SES17 satellite in late 2021. To comprehensively model and simulate the behavior of 2Φ-MPL fluid loops at the system level, a combination of tools was employed. Siemens Amesim was utilized in co-simulation with the TAS e-Therm thermal simulation tool, which incorporates TAS thermal nodal modeling and solving capabilities for satellite design. The e-Therm / Siemens Amesim co-simulation was jointly developed in 2016 by DOREA, the organization responsible for the development and maintenance of e-Therm under the TAS contract. The co-simulation was implemented using the "Generic Co-Simulation Interface" from Siemens imagine.lab library.
In the frame of an ESA contract, the present study aims to assess whether EcosimPro can serve as a suitable alternative to Amesim for conducting simulations of this type. To this end, the first step consists in establishing 2Φ-MPL model with EcosimPro, followed by performing co-simulation of e-Therm with EcosimPro, and finally consolidating EcosimPro's evaluation to draw conclusions.

Primary authors

Presentation materials