10–12 Oct 2023
ESA/ESTEC
Europe/Amsterdam timezone

CNES Flight Experiment for Thermal Coatings Aging: THERME

11 Oct 2023, 11:00
30m
Einstein

Einstein

thermal design (for platforms, instruments etc.) Thermal Design

Speaker

Simona Calarco (CNES)

Description

The in-flight evolution of thermo-optical properties of thermal coatings is of great concern when defining the thermal control system (TCS) of spacecraft. Experience (in-flight measurements and aging tests in laboratory) demonstrates that the parameter really affected by the in-orbit aging is the solar absorptivity, which often increases when coatings are under space environment conditions. To define spacecraft TCS, thermal engineers have to take into account, from beginning of life (BOL) to end of life (EOL), the thermo-optical properties evolutions of the external coatings they intend to use (the solar absorptivity and the emissivity). Radiative surfaces sizes cope with the hottest conditions of the mission, which generally depend on the EOL properties of external coatings. But the larger the surfaces, the higher the heating power needed for the coldest conditions of the mission, which generally depend on BOL properties. Improving the knowledge of the in-orbit evolutions of the solar absorptivity of thermal coatings is consequently of paramount importance to optimize the TCS designs, and then to better master the on-board heating power consumption.
In this context, CNES has developed since 1990 a very simple and low cost experiment, called “THERME”, to evaluate the degradation of space coatings in real orbital conditions. This experiment was previously carried on low Earth orbit (LEO) spacecraft such as SPOT 2 and 5, HELIOS 2A and 2B and Demeter, all removed from operational service. In the last few years, the THERME experiment design was extended for geostationary (GEO) mission typical constraints and is now flying on ATHENA-FIDUS and KOREASAT from TAS and on a telecom mission from ADS.

During the European Space Thermal Engineering Workshop 2023, we present the overall concept and design of THERME, the qualification logic and the test campaign. We discuss also in methodology for exploitation of flight results of THERME, of main flight results and we identify the axes of improvement for future missions.

Primary author

Co-authors

Presentation materials