10–12 Oct 2023
ESA/ESTEC
Europe/Amsterdam timezone

Thermal Control Design and Challenges for CIMR

11 Oct 2023, 12:30
30m
Einstein

Einstein

thermal design (for platforms, instruments etc.) Thermal Design

Speakers

Matteo Chiappi (TAS-I)Dr Alberto Franzoso (OHB-I)

Description

The Copernicus Imaging Microwave Radiometer (CIMR) is part of ESA’s Sentinel Expansion missions and is a complex system involving a satellite platform, a rotating microwave radiometer and a deployable mesh reflector. The purpose of the mission is to monitor and provide information on Earth’s water surfaces, by gathering radiometric data on sea surface temperature, sea-ice concentration and salinity percentage. This presentation aims to introduce the system’s thermal control: its design drivers, challenges and technical solutions.
CIMR is currently advancing to the CDR phase, foreseen for the last quarter of 2025. Due to the complex interface system between payloads and instruments, an avant-garde thermal management is required, consisting of both active and passive thermal control means. Part of the thermal challenges include: an environment definition for the rotating scan mechanism, the thermal behavior of the reflector mesh, the behavior of heat pipes under centrifugal forces and the thermal interface management within the platform. A set of hybrid thermal models were assembled to approach such challenges, consisting of both detailed and correlated reduced sub-models. In addition, a considerable effort was devoted to the thermal management of the satellite’s interfaces between platform, radiometer and reflector.
Thermal control trade-offs are currently in progress and the final design will include heritage thermal hardware as well as a few tailored items to meet specific requirements. It is foreseen that the final thermal control design will serve as heritage for future Earth observation missions involving large rotating payloads and deployable systems.

Primary authors

Presentation materials