Conveners
Heat Transport: 2-Phase
- Paula Prado Montes
Heat Transport: 2-Phase
- emmanuel caplanne (ESA)
For all its satellites, Airbus Defence and Space relies on top-level technology to implement the Thermal Control System. This Thermal Control System shall ensure that payload and/or equipment heat dissipation is transported and spread onto the S/C cold sinks (radiators) efficiently enough to maintain temperatures in the allowable ranges.
For this duty, some of the most advanced thermo-fluidic...
Latest generation of active antennas designs are demanding low thermal gradients and low volume (specially for LEO designs). Additive manufacturing introduces high flexibility to fulfil these main requirements, the 2-phase thermal component can be directly manufactured in the system to refrigerate, improving the thermal behaviour and increasing the level of integration in the system.
A...
This presentation describes current status and future prospect of R&D activities on two-phase heat transport technology of Japan Aerospace Exploration Agency (JAXA). In addition to passive thermal control devices such as a loop heat pipe (LHP) and an oscillating heat pipe (OHP), R&D activities of active thermal control devices such as two-phase mechanical pumped loop are conducted. Active...
Arquimea Space recently developed a thermal control system (TCS) that removes and transport high power levels (up to 6 kW) from the active antennae DRA (Airbus D&S-Spain) on board GEO Telecom Satellite satellites (Airbus D&S-France, Hisdesat, ESA). This TCS was defined after a coengineering phase with Aribus D&S Spain. Then, Arquimea Space carried out the detailed design, manufacturing and...
The satellite telecommunications industry is currently undergoing significant evolutions. Future communication satellites need to accommodate a rapidly growing demand in data transfer, combined with more flexibility. For example, there is a strong need for Very High Throughput Satellites capable of delivering up to Terabyte per second over wide coverage areas. This is only possible when an...
In order to homogenize the temperature distribution over an electronic box, the use of heat pipes is investigated. The operating temperature range is between + 20 °C and + 85 °C. The expected main working range is between + 20 °C and + 55 °C. The total heat dissipation to be transported is 45 W. It is distributed over three locations: Evaporator 1 (top left position): 7 W; Evaporator 2 (top...
Chemical compatibility between the main components of two-phase heat transfer devices is of critical importance for correct operation and stability throughout the device’s operational lifetime. The use of incompatible fluid-metal combinations can lead to corrosion and/or the generation of non-condensable gas (NCG), both of which result in reduction in heat transfer performance or complete...
The increasing demand in image quality provided by forthcoming observation missions needs both to use very low-CTE materials for focal planes, such as Silicon Carbide (SiC), and to accommodate electronics very close to the detector. Such a highly integrated focal plane thus implies an efficient Thermal Control to drain the heat dissipation and ensure a high stability of the detector...