DLR Space Administration through its Department for Space Situational Awareness is active in different areas of Space Debris research and Space Weather. I will present a short overview of current activities in these areas, as well as our involvement in qualification of components.
Building on over a half century of atmospheric science and space physics engineering, OHB Sweden has developed a key competence in science-specific smallsat missions. The journey began already in the 1960s with the focus on sounding rockets and balloon payloads from northern Sweden, but evolved in to orbital satellites with the first Swedish plasma physics mission, Viking, in 1986. Since...
An Ion and Neutral Mass Spectrometer (INMS), designed for sampling of low mass ionised and neutral particles in the spacecraft ram direction, was developed for the EU QB50 CubeSat constellation mission. 9 INMS instrument were launched on their respective educational CubeSats and to date, data has been returned for a one month period from the one working QB50 CubeSat. Two further sensors are...
LISA Pathfinder (LPF) was the European Space Agency (ESA) technology demonstrator of the Laser Interferometer Space Antenna (LISA). The LPF spacecraft (S/C) was orbiting at about 1.5 x 10^6 km away from the Earth around the first Sun-Earth Lagrangian libration point (L1). Using fluxgate platform magnetometer measurements, it was possible to resolve the magnetic field generated on board...
In the frame of the ESA SSA program a four-sensor Service Oriented Spacecraft Magnetometer (SOSMAG) was launched with GEO-KOMPSAT-2A into a geostationary orbit on December 4th 2018. The instrument is designed for magnetic field measurements onboard of satellites which are developed without magnetic cleanliness requirements. The multi sensor arrangement is used for eliminating spacecraft...
In September 2018, a photographic survey of the outer surface of the Columbus module of the International Space Station (ISS) with emphasis on the forward facing areas was conducted to obtain information on the space debris and meteoroid environment at the ISS orbit. Video footage from the camera installed at the tip latching end effector (LEE) of the robotic arm (space station remote...
Small space debris objects and micrometeoroid particulates (collectively called microparticles) pose a significant threat to the safe operations of satellites and other space systems in Earth orbit. Depending on particle’s size, speed, and impact angle, hypervelocity particle impacts can degrade surfaces, puncture outer walls, damage internal components, and in the worst case lead to the...
The Orbiting Dust Impact Experiment (ODIE) is a dedicated, retrievable, passive dust collector, designed to be placed on, for example, the outside of the International Space Station to facilitate the investigation of the flux and origin (orbital debris OD vs micrometeoroid MM), of dust particles in Low Earth Orbit (LEO). ODIE is comprised of multiple layers of polymer foils that act in much...
The SafeSpace project aims at advancing space weather nowcasting and forecasting capabilities and, consequently, at contributing to the safety of space assets through the transition of powerful tools from research to operations (R2O). This will be achieved through the synergy of five well-established space weather models (CNRS/CDPP solar disturbance propagation tool, KULeuven EUHFORIA CME...
ESA’s Space Environment Information System (SPENVIS, https://www.spenvis.oma.be) is providing interfaces to various models and tools that can be employed for scientific studies related to the characterisation of the space environment and its effects. In particular, users can employ these tools to verify instrument and detector responses, optimise space radiation shielding and investigate...
A CubeSat constellation platform has been found to be a tempting and cost-effective solution for monitoring of space weather at LEO, which would complement higher altitude space weather observations, providing data for validation of space weather models and using assimilation for better spatial and temporal resolution, thus enabling downstream services for operational use in aviation and other...
Summary:
INTA has the opportunity to fly a radiation monitor on-board the long duration stratospheric balloon flight Sunrise III as part of the TuMag Collaboration instrument.
The requirements of this monitor are:
• It should be completely autonomous, in terms of mechanical integration, power supply, data acquisition and storage during a long duration flight of at least 10 days.
...
The 3DEES is conceived as a compact and modular science-class spectrometer allowing angle resolved high electron energy coverage (0.1 – 10 MeV) using a few sensors. Its baseline set-up provides capabilities to measure angular distribution of electrons and protons at 12 angles spanning over 180° in two planes. The 3DEES also allows measurements of proton fluxes (4-50 MeV), while performing...
ICARE-NG is a radiation monitor already embedded in several space missions such as SAC-C, SAC-D, JASON2, JASON3 and more recently E7C.
Composed of several detection heads, a wide range of electron and proton energies can be measured. Initially designed with three detection heads, the geometries have recently been revised in order to integrate a new low-energy proton detection head. To...
Mission
NORM is the Norwegian Radiation Monitor for measuring energetic charged particle radiation in space. NORM is designed as an easily adaptable space radiation monitor for satellite missions in GEO, LEO, and HEO. The development is funded by ESA.
NORM’s first flight will be on the Arctic Satellite Broadband Mission (ASBM) in a highly-elliptical three point apogee orbit (HEO-TAP)....
The D3S-RADMAG radiation monitor and space weather instrument concept is aimed to provide a market product combining the radiation and magnetic field measurement capability into one payload to be directly applicable within the D3S hosted payload concept of ESA. The instrument Radiation Monitor Unit (RM-RAD) includes a sophisticated, complex silicon detector based telescope, called RADTEL, with...
Penetrating particle Analyzer (PAN) is a magnetic spectrometer designed for deep space science and interplanetary missions. It can measure the energetic particles in precision, monitoring the cosmic rays physics, solar physics, space weather, etc, and spanning over more than 1 full solar cycle. The spectrometer is in a limited mass ~ 20 kg and limited power consumption ~20 W, which facilitate...
ESA’s Space Safety & Security activities are aimed at monitoring and mitigating the impact of space hazards to critical infrastructure. One of the cornerstones of these activities is development of a Space Weather monitoring system. A significant undertaking towards this is a mission to the L5 Sun-Earth Lagrange point. A complement of remote-sensing instruments and a suite of in-situ...
Results from an ongoing evaluation of the utility of an Electrostatic Analyser to investigate surface charging conditions at GEO will be presented, including an initial correlation with data from a LANL MPA sensor and a simple surface charging sensor. Use of this and similar sensors to investigate in-orbit spacecraft anomalies will be discussed.
The Sweeping Langmuir Probe (SLP) instrument on board the Pico-Satellite for Atmospheric and Space Science Observations (PICASSO) has been developed at the Royal Belgian Institute for Space Aeronomy. PICASSO, an ESA in-orbit demonstrator launched in September 2020, is a triple unit CubeSat flying at about 540 km altitude with 97 degrees inclination.
The SLP instrument includes four...
The instrument for SensIng electroMagnetic pulses on Cubesat (CubeSIM), currently in phase B at ONERA in the frame of the internal ONSAT-1 research project, aims to detect and measure the effects of electrostatic discharges induced by the plasma environment. The first mission envisioned to fly this instrument in SSO LEO orbit is called ChaRging On CubeSat (CROCUS). The targeted platform is a...
A heavy-ion beam monitor based on 3D NAND Flash memories was designed and tested with heavy ions at high energy and low LET. The capability of measuring fluence, angle, uniformity, and LET of impinging particles is discussed, together with the advantages over SRAM-based implementations. We propose ad-hoc algorithms for the extraction of the beam parameters, based only on user-mode commands. A...
Monitoring radiation dose levels in space is crucial, specially with the growing trend on using COTS in space applications. With such a goal, iC-Malaga / Sealicon Microsystems designs and produce integrated dosimeters on-chip, based in its proprietary FGDOS® technology, which allows truly passive (zero power) radiation dosimeter manufacturing in standard commercial CMOS technologies.
FGDOS®...
Risk prediction in space radiation environments is challenging due to the mixed particle radiation field, especially of charged particle of high energy and charge (HZE) in galactic cosmic rays (GCR). It can be quantified in terms of probability for radiation exposure induced death (REID) from cancer. This approach is strongly based on a track structure of HZE ions determined density of...
The recent revival of space exploration implies an increased interest in space travels that are associated with many challenges and risks, mostly related to the ever-changing adverse space weather. Radiation of any types can be detrimental to both astronauts and the equipment on-board. The capability of monitoring radiation levels reliably in space is therefore becoming a critical aspect for...
The Miniaturized Detector for Application in Space (MIDAS) is developed in response to the requirement of the European Space Agency for a device whose size, power consumption and radiation data output would increase the level of space-flight crew autonomy regarding operational decisions related to radiation hazards. It is based on fully depleted active Si pixel sensors for measuring LET and...
We present SpacepiX Radiation Monitor (SXRM), a novel 5-layer telescopic pixel detector with interleaved absorber layers based on new SpacePix2 ASIC. The SXRM is a low-power (<500mW average power consumption) compact radiation monitor designed for charged particle species and energy determination. It is designed for detection and identification of protons, electrons and heavy ions and it can...
A miniaturized radiation monitor (MIRAM) has been developed by the Institute of Experimental and Applied Physics of the Czech Technical University in Prague together with their spin-off company ADVACAM s.r.o.. MIRAM combines a hybrid pixel detector of the Timepix3 technology with a 300 - 500 μm thick silicon sensor with a set of four diodes. It provides a real-time measurement of particle...
The Space Application of Timepix Radiation Monitor (SATRAM) is now in space for more than 7 years continuously measuring the radiation in Low Earth Orbit. It is attached to the Proba-V satellite, an Earth observing satellite of the European Space Agency (ESA) from an altitude of 820 km on a sun-synchronous orbit. The technology demonstration payload is based on the Timepix chip with a 300 μm...
The ESA Next Generation Radiation Monitors (NGRM) are optimized for particle detection in harsh radiation environments among which we mention solar energetic particle fluxes and South Atlantic Anomaly trapped particles. These characteristics will be precious when solar energetic particle (SEP) events will be observed along the LISA orbit. However, particle monitors optimized for high particle...
The first unit of the ESA Next Generation Radiation Monitor (NGRM) sensor - a pre-cursor of ESA distributed SWE Sensor System (D3S) – was switched on within the first hours after the launch of the European Data Relay System, Satellite-C (EDRS-C) on August, 2019. As a result, the NGRM unit has provided invaluable measurements during the GTO prior to its arrival at GEO 31 degrees East. The NGRM...
Notwithstanding notable improvements made in the last decades, the characterization of the near-Earth proton radiation environment is incomplete, with major uncertainties affecting the description of high-energy particles (>50 MeV) in the South Atlantic Anomaly (SAA) region. The Payload for Antimatter-Matter Exploration and Light Nuclei Astrophysics (PAMELA) satellite-borne experiment,...
By now the Energetic Particle Telescope (EPT) on-board Proba-V (launched on 7th May 2013 onto a polar Low Earth Orbit of 820 km altitude) has provided quasi continuously more than 7 years of flux spectra data for electrons (0.5–8 MeV), protons (9.5–248 MeV) and α-particles (38–980 MeV) with a time resolution of 2 seconds. The data are transmitted to ground 3 times per day, where within several...
Mission design is driven by human and spacecraft safety and accurate space radiation environment models are crucial. For space mission planning, flux predictions in the radiation belts are considered. For this, the AP-8 model for proton fluxes and AE-8 model for electron fluxes are used. They are empirical models of the omnidirectional trapped integral fluxes in Earth’s magnetosphere. The...
Accurate measurements of trapped energetic electron fluxes are of major importance for the monitoring of the radiation belts and for the characterization of space radiation environment. We present an inter-calibration analysis of the energetic electron flux measurements of MagEIS and REPT on-board the Radiation Belt Storm (or Van Allen) Probes (RBSP/VAP) using the measurements of the Extremely...
HelMod is a Monte-Carlo model that reproduce solar modulation process during high and low solar activity periods, in the inner and outer heliosphere, at the Earth location and outside the ecliptic plane, making it suitable for both Earth orbit studies and deep space missions.
The main time dependent parameters are solar observables like the sunspot number, the tilt angle of neutral...